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Extreme values of monotone function

p

( )u u p=u

p
-

p
+

( )u u p
+ +=

( )u u p
- -= 0

du

dp
>

Figure: Extreme values of a monotone function u = u(p) can be
calculated by using upper and lower bounds of the parameters i.e.
p−, p+ ∈ R.
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Sensitivity analysis

u = u(p), p ∈ [p−, p+] (1)

du(p)

dp
> 0, for p ∈ [p−, p+] (2)

u− = u(p−), u+ = u(p+) (3)

du(p)

dp
< 0, for p ∈ [p−, p+] (4)

u− = u(p+), u+ = u(p−) (5)
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Sensitivity analysis

If
du(p)

dp
> 0, p−s = p−, p+

s = p+ (6)

If
du(p)

dp
< 0, p−s = p+, p+

s = p− (7)

u− = u(p−s ), u+ = u(p+
s ) (8)
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Sensitivity analysis: functional parameters case

p = p(y) ∈ [p−(y), p+(y)] (9)

u(x , p) =

L∫

0

L(x , p(y))dy ≈
∑

i

L(x , p(yi ))∆yi (10)

∂u(x , p)

∂p(yi )
≈ ∂L(x , p(yi ))

∂p(yi )
∆yi (11)

δu(x , p) = δ

L∫

0

L(x , p(y))dy =

L∫

0

δL(x , p(y))

δp(y)
δp(y)dy (12)

δu(x , p)

δp(y)
=

∂L(x , p(y))

∂p(y)
(13)
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Sensitivity analysis: functional parameters case

p(y) ∈ [p−(y), p+(y)] (14)

if
δu(x , p)

δp(y)
> 0 then , (15)

p−s (y) = p−(y), p+
s (y) = p+(y) (16)

if
δu(x , p)

δp(y)
< 0 then , (17)

p−s (y) = p+(y), p+
s (y) = p−(y) (18)

u−(x) = u(x , p−s ), u+(x) = u(x , p+
s ) (19)
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Remarks

u−(x) = u(x , p−s ), u+(x) = u(x , p+
s ) (20)

In multidimensional case the set

p̃ = {(p1, ..., pm) : pi ∈ [p−i (y), p+
i (y)], y ∈ Ω} (21)

may be very complicated.
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Uncertainty in mechanics

Figure: Material properties and geometrical parameters of damaged
structures
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Uncertainty in mechanics

Figure: Material and geometrical properties of rocks
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Uncertainty in mechanics

Figure: Material and geometrical properties of soil
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Random variables
I Definition X : Ω 3 ω → X (ω) ∈ R

I Probability density function P{a ≤ X ≤ b} =
b∫
a

f (x)dx

Figure: Probability that P{a ≤ X ≤ b} =
b∫
a

f (x)dx
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Application of random variables

I Random material characteristics e.g.
I Young modulus E : Ω 3 ω → E (ω) ∈ R
I Poisson number ν : Ω 3 ω → ν(ω) ∈ R
I Random point load P : Ω 3 ω → P(ω) ∈ R
I Random distributed load q : Ω 3 ω → q(ω) ∈ R
I etc.

I Random parameters are characterised by using probability
density function

P{ω : E1 ≤ E (ω) ≤ E2} =
E2∫
E1

fE (E )dE
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Beam with random parameters

P
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Figure: Beam with random parameters

13/43



Distributed load as a random variable

L

E,A,J

q

Figure: Beam with random distributed load
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Distributed load as a random field

L

E,A,J

q

Figure: Beam with random distributed load

At this moment interval methods are not able to take into account
more complicated types of dependency.
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Discretization of random fields

I Definition q : (Ω, R) 3 (ω, x) → q(ω, x) ∈ R.

I Random fields can be approximated by the random vectors.
{(q(x , ω), x , ω) : x ∈ [0, L], ω ∈ Ω} ≈
{q(x1, ω), q(x2, ω), ..., q(xn, ω)}

E,A,J

q

E,A,J

1
x

i
x

n
x

x

x
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Description of random vectors (discretized random fields)

For gaussian random fields we can describe the probability density
function of the random process as multivariate normal distribution

f (x) =
1

(2π)
N
2 |Σ|

exp

(
−1

2
(x − µ)TΣ−1(x − µ)

)
(22)

where
µ = E [X ] (23)

Σ = E [(X − E [X ])(X − E [X ])T ] (24)

Applications:
Stochastic ODE, PDE, stochastic FEM, FORM, SORM,
Monte-Carlo methods etc.
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Main problem:
How to get probabilistic characteristics (e.g. µ, Σ)?

Figure: Concrete beams with cracks
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Limitations of probabilistic methods

Elishakoff I., Possible Limitations of Probabilistic Methods in
Engineering, ASME. Applied Mechanics Reviews, Vol.53, pp 19-36,
2000

I Lack of probabilistic data (because there is no time and
money for collecting that data).

I Controversy related to likelihood interpretation of reliability
and safety.

I Some researchers claim that probability doesn’t exist.

I In many cases the problems are unique (particularly civil
engineering applications) and it is hard to get reliable
probabilistic data.

I In some cases data are unavailable because it is very hard to
get the information about the values of particular parameter
(e.g. material parameters of soil 2000 m under ground level).

I etc.
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Safety factors

I Semi-probabilistic methods. Reliability index

β = −Φ−1(Pf ) (25)

Calibration of partial safety factors

min
γ

W (γ, β) (26)

where W is some penalty function.

I Non-probabilistic definition

γ =
xmax

xdesign
(27)

where xdesign is a design value, xmax is characteristic value.
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Existing methods of modelling uncertainty
Design of structures using standard codes

Limit state design (Eurocode)

Rk

γM
> Ed (28)

where

Ed =
∑

j>1

γGjGj + γPP + γQ1Qk1 +
∑

i>1

γQiψ0iQki (29)

Rk - is the characteristic value of the resistance
Ed -is the design value of the action effects
Gk -is the characteristic value of the permanent effects
P-it the characteristic value of prestressing
Qk -is the characteristic value of the time variant actions
γM , γGj , γP , γQ1, γQi - safety factors
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In limit state design we have to predict worst case
(worst case design)

I In existing codes only extreme load combinations have to be
taken into account.

∀P ∈ {P1, ...,PN}, Rk

γM
> Ed(P) (30)

I However in reality it will be better to include also variations
loads, material and geometric parameters simultaneously

∀p ∈ p̃,
Rk

γM
> Ed(p) (31)

where p is a vector of all parameters. In general we have

∀p ∈ p̃, g(p) > 0 (32)

where g is any limit state function.
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Simplest case of worst case analysis: interval parameters

I p̃ = [p−, p+] or p̃ = [p−1 , p+
1 ]× [p−2 , p+

2 ]× ...× [p−m, p+
m].

I Solution set of equations with interval parameters

u(p̃) = {u : F (u, p) = Q(p), p ∈ p̃} (33)

or
♦u(p̃) = ♦{u : F (u, p) = Q(p), p ∈ p̃} (34)

where ♦u(p̃) is the smallest set which contain the set u(p̃).
Above definition us valid also in the case of differential and
integral equation.

I In particular case we have system of linear equation with
interval parameters.

♦u(p̃) = ♦{u : K (p)u = Q(p), p ∈ p̃} (35)
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Convex model of uncertainty

I Ben-Haim, Y., and Elishakoff, I. (1990). Convex models of
uncertainty in applied mechanics, Elsevier, New York.

I Ellipsoidal uncertainty

p̃ =

{
(p1, p2) :

p2
1

a2
+

p2
2

b2
6 1

}
(36)

1
p

2
p

a

b

Figure: Ellipsoidal uncertainty
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General set-valued uncertainty

I Let us consider equilibrium equation of beam under
tension-compression.

d

dx

(
EA

du

dx

)
+ n = 0 (37)

P

x

)(xA

x

Figure: Rod under tension
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General set-valued uncertainty

I Uncertain Young modulus

E (x) ∈ Ẽ (x) = [E−(x),E+(x)] (38)

x

( )E E x
-=

( )E E x
+=

E

Figure: Set-valued Young modulus
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Solution of equation with set valued Young modulus

I Solution at point x (displacements)

u(x) ∈ ũ(x) = [u−(x), u+(x)] = ♦{u(x , E) : E ∈ Ẽ} (39)

I Solution of discretized equations in the nodal points

u ∈ ♦u(Ẽf ) = ♦{u(E ) : E ∈ Ẽ} (40)

In this case E is a function E : [0, L] 3 x → E (x) ∈ R and Ẽ
is a functional space of functions form the interval [0, L] to R
where.

∀E ∈ Ẽ ,∀x ∈ [0, L], E−(x) 6 E (x) 6 E+(x) (41)
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Solution of interval equation using endpoint combination
method

I Let us consider interval equation

f (u, p) = 0, or equivalently u = u(p) (42)

I Additionally lets assume that x = x(p) is monotone, then

u− = min{u(p−), u(p+)}, x+ = max{u(p−), u(p+)} (43)

In multidimensional case in order to find the solution we have
to solve 2m (where m is a number of uncertain parameters).

u− = min{u(p±1 , p±2 , ..., p±
m

)} (44)

u+ = max{u(p±1 , p±2 , ..., p±m)} (45)
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Solution of interval equation using sensitivity analysis

I Let assume that the function x = x(p) has positive derivative

du(p0)

dp
> 0 (46)

u− = u(p−), u+ = u(p+) (47)

where
p0 = mid(p̃) (48)
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Solution of interval equation using sensitivity analysis

I That algorithm can be also applied in multidimensional case

∂u(p0)

∂pi
> 0 (49)

For example sensitivity can be calculated in the following way

K (p0)u(p0) = Q(p0) (50)

K (p0)
∂u(p0)

∂pi
=

∂Q(p0)

∂pi
− ∂K (p0)

∂pi
u(p0) (51)
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Sensitivity of the solution of the differential equation of
tension-compression problem

I That algorithm can be also applied in multidimensional case

d

dx

(
EA

du

dx

)
= 0 (52)

u(0) = 0, EA
du(L)

dx
= P (53)

To the solution of that problem one can apply FEM method

uh(x) = N0(x)u0 + N1(x)u1 (54)

N0(x) =
(
1− x

L

)
, N1(x) =

x

L
(55)

where u0 = 0.
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Approximation of the value of integrals by a set of discrete
values

K · u = P (56)

where

K =

L∫

0

E (x)A(x)
dN1(x)

dx

dN1(x)

dx
dx (57)

and u = u1.

K ≈
∑

i

E (xi )A(xi )
dN1(xi )

dx

dN1(xi )

dx
∆xi (58)
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Sensitivity with respect to point values of Young modulus

∂K

∂E (xi )
≈ ∂

∂E (xi )

(∑

i

E (xi )A(xi )
dN1(xi )

dx

dN1(xi )

dx
∆xi

)
(59)

∂K

∂E (xi )
≈ A(xi )

dN1(xi )

dx

dN1(xi )

dx
∆xi =

A(xi )∆xi

L2
(60)

Functional derivative

δK

δ E (xi )
= lim

∆xi→0

1

∆xi

∂K

∂E (xi )
≈ A(xi )

dN1(xi )

dx

dN1(xi )

dx
(61)
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Taylor expansion of the solution

Taylor Series

u(x , p0 + ∆p) ≈ u(x , p0) +
∑

i

∂u(x , p0)

∂p(yi )
∆p(yi ) + ... (62)

Functional Taylor Series

u(x , p0 + δp) ≈ u(x , p0) +

L∫

0

δu(x , p0)

δp(y)
δp(y)dy + ... (63)
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Sensitivity analysis

Let’s assume that

δu(x , p0)

δp(y)
> 0, for y ∈ ỹ+

p ⊂ [0, L] (64)

δu(x , p0)

δp(y)
< 0, for y ∈ ỹ−p ⊂ [0, L] (65)

additionally

p+
s (y) =

{
p0(y) + δp+(y) for y ∈ ỹ+

p

p0(y) + δp−(y) for y ∈ ỹ+
p

(66)

p−s (y) =

{
p0(y) + δp−(y) for y ∈ ỹ+

p

p0(y) + δp+(y) for y ∈ ỹ+
p

(67)

then
u−(x) = u(x , p−s ), u+(x) = u(x , p+

s ) (68)
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Example: tension problem, sensitivity with respect to E

The sensitivity can be calculated form the equation

K (E0)
δu(p0)

δE (xi )
=

δQ(p0)

δE (xi )
− δK (p0)

δE (xi )
u(p0) (69)

The result of calculation is the following

δu(x , p0)

δE (y)
= − P

E 2(y) · A(y)
< 0, for y ∈ [0, L] (70)

then
E+

s (y) = E0(y) + E−(y) (71)

E−s (y) = E0(y) + E+(y) (72)

and extreme values can be calculated by using

u−(x) = u(x ,E−s ), u+(x) = u(x , E+
s ) (73)
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Example: tension problem, sensitivity with respect to A
and E

The result of calculation is the following

δu(x , p0)

δA(y)
= − P

E (y) · A2(y)
< 0, for y ∈ [0, L] (74)

then
A+

s (y) = A0(y) + A−(y) (75)

A−s (y) = A0(y) + A+(y) (76)

and extreme values can be calculated by using

u−(x) = u(x ,A−s ,E−s ), u+(x) = u(x , A+
s , E+

s ) (77)
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Sensitivity analysis: general case
Let’s assume that

δu(x , p0)

δpi (y)
> 0, for y ∈ ỹ+

p ⊂ [0, L] (78)

δu(x , p0)

δpi (y)
< 0, for y ∈ ỹ−p ⊂ [0, L] (79)

additionally

p+
si (y) =

{
p0i (y) + δp+

i (y) for y ∈ ỹ+
p

p0i (y) + δp−i (y) for y ∈ ỹ+
p

(80)

p−si (y) =

{
p0i (y) + δp−i (y) for y ∈ ỹ+

p

p0i (y) + δp+
i (y) for y ∈ ỹ+

p
(81)

then

u−(x) = u(x , p−s1, ...p
−
sm), u+(x) = u(x , p+

s1, ..., p
+
sm) (82)
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Sensitivity analysis: general case

u−(x) = u(x , p−s ), u+(x) = u(x , p+
s ) (83)

where
p−s = (p−s1, ...p

−
sm), p+

s = (p+
s1, ..., p

+
sm) (84)
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Numerical calculation of functional derivative

δu(x , p0)

δpi (y)
≈ u(x , p0 + δpi (y))− u(x , p0)

∆pi (y)
(85)

y

i
p

y L=

0 ( )
i i

p p y=

Figure: Function variation
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Taylor expansion method - function parameter case

Taylor series (first order method)

u(x , p0 + ∆p) ≈ u(x , p0) +
∑

i

∂u(x , p0)

∂p(yi )
∆p(yi ) (86)

u(x)− ≈ u(x , p0)−
∑

i

∣∣∣∣
∂u(x , p0)

∂p(yi )

∣∣∣∣ |∆p(yi )| (87)

u(x)+ ≈ u(x , p0) +
∑

i

∣∣∣∣
∂u(x , p0)

∂p(yi )

∣∣∣∣ |∆p(yi )| (88)
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Taylor expansion method - function parameter case

Taylor series (first order method)

u(x , p0 + ∆p) ≈ u(x , p0) +
∑

j

∑

i

∂u(x , p0)

∂pj(yi )
∆pj(yi ) (89)

u(x)− ≈ u(x , p0)−
∑

j

∑

i

∣∣∣∣
∂u(x , p0)

∂pj(yi )

∣∣∣∣ |∆pj(yi )| (90)

u(x)+ ≈ u(x , p0) +
∑

j

∑

i

∣∣∣∣
∂u(x , p0)

∂pj(yi )

∣∣∣∣ |∆pj(yi )| (91)
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Conclusions

I Using functional derivative it is possible to find solution of
equation with uncertain functional parameters.

I The method can be applied to solution of large class of
engineering problems with uncertain filed.

I The method can be applied to solution of linear and nonlinear
problems of computational mechanics with uncertain filed.

I The algorithm of sensitivity analysis method method can be
parallel.
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