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Extreme values of monotone function
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Figure: Extreme values of a monotone function u = u(p) can be
calculated by using upper and lower bounds of the parameters i.e.

p-,pt €R.



Sensitivity analysis
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Sensitivity analysis
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Sensitivity analysis: functional parameters case
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u(x.p) = / Lk, ply))dy = 3 L(x, Py

0
du(x,p) _ OL(x, p(yi))

o)~ oply) Y
L L
su(x.p) =5 [ Lx.p(r))dy = | ‘wcsp(y)dy
0 0

5U(X, P) _ aL(X7 p(y))
Sp(y) Ip(y)

(12)

(13)



Sensitivity analysis: functional parameters case

p(y) € lp~(v), P (¥)]

i oulxp)

5p(y) >0 then |,
ps (V) =p"(y), PF(y)=p"(¥)
. ou(x,p)
if 5p(y) <0 then ,

ps (v)=p"(y).

p(y)=p"(y)

u™(x) = ulx, py);

ut(x) = ulx, py)




Remarks

um(x) = u(x,ps ), u'(x) = u(x,pS) (20)

In multidimensional case the set

p=A{(p1, - Pm) : pi € [p; (), P V)], y € 2} (21)

may be very complicated.



Uncertainty in mechanics

Figure: Material properties and geometrical parameters of damaged
structures
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Uncertainty in mechanics

Figure: Material and geometrical properties of rocks

0/43



Uncertainty in mechanics
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Figure: Material and geometrical properties of soil
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Random variables
» Definition X : Q35w — X(w) € R

b
» Probability density function P{a < X < b} = [ f(x)dx
a

A

Yy,

Y y=/(

a b

b
Figure: Probability that P{a < X < b} = [ f(x)dx
a

11/43



Application of random variables

» Random material characteristics e.g.
» Young modulus E: Q>w — E(w) € R
» Poisson number v: Q23> w — v(w) €R
» Random point load P: Q> w — P(w) € R
» Random distributed load ¢ : Q 3w — g(w) € R
> etc.
» Random parameters are characterised by using probability
density function

Plo: B < Ew) < B} = | fo(E)dE
E1
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Beam with random parameters
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Figure: Beam with random parameters



Distributed load as a random variable
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Figure: Beam with random distributed load
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Distributed load as a random field
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Figure: Beam with random distributed load
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At this moment interval methods are not able to take into account
more complicated types of dependency.
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Discretization of random fields
» Definition g : (2, R) 3 (w, x) — q(w,x) € R.
» Random fields can be approximated by the random vectors.
{(g(x,w), x,w) : x € [0, L],w € Q} =
{Q(Xl,W), CI(XQ,LU), [RX) q(Xna LU)}
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Description of random vectors (discretized random fields)

For gaussian random fields we can describe the probability density
function of the random process as multivariate normal distribution

f(x) = mexp (-3-nTE o) @)
where
5= EIX] (23)
¥ = E[(X - EIX])(X — E[X])"] (24)
Applications:

Stochastic ODE, PDE, stochastic FEM, FORM, SORM,
Monte-Carlo methods etc.
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Main problem:
How to get probabilistic characteristics (e.g. p, X)?

Figure: Concrete beams with cracks



Limitations of probabilistic methods

Elishakoff I., Possible Limitations of Probabilistic Methods in
Engineering, ASME. Applied Mechanics Reviews, Vol.53, pp 19-36,

2000

>

Lack of probabilistic data (because there is no time and
money for collecting that data).

Controversy related to likelihood interpretation of reliability
and safety.

Some researchers claim that probability doesn't exist.

» In many cases the problems are unique (particularly civil

engineering applications) and it is hard to get reliable
probabilistic data.

In some cases data are unavailable because it is very hard to
get the information about the values of particular parameter
(e.g. material parameters of soil 2000 m under ground level).

etc.
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Safety factors

» Semi-probabilistic methods. Reliability index
B=—"1(Pf) (25)
Calibration of partial safety factors

min W/(1. ) (26)

where W is some penalty function.

» Non-probabilistic definition

XmaX
v= xdesign (27)
where x958" is a design value, x™® is characteristic value.
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Existing methods of modelling uncertainty
Design of structures using standard codes

Limit state design (Eurocode)

where

Eq =) 716G +1pP+701Qu + > vaitoi Qi
> i>1

Ry~ is the characteristic value of the resistance

E4-is the design value of the action effects

Gy-is the characteristic value of the permanent effects
P-it the characteristic value of prestressing

Q)-is the characteristic value of the time variant actions
YM,YGjs VP, YQ1,VQi - safety factors
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In limit state design we have to predict worst case
(worst case design)

» In existing codes only extreme load combinations have to be
taken into account.

R
VP € {P, ..., Py}, Tk > E4(P) (30)
M

» However in reality it will be better to include also variations
loads, material and geometric parameters simultaneously

. R
Vp € b, —< > Eq(p) (31)
M

where p is a vector of all parameters. In general we have

Vpe p,g(p) >0 (32)

where g is any limit state function.
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Simplest case of worst case analysis: interval parameters

> p=[p~ Pt or p=Ilpr.p]x [Py, P ] % o X [P P
» Solution set of equations with interval parameters

u(p) = {u: F(u,p) = Q(p),p € b} (33)
Ou(p) = O{u: F(u,p) = Q(p), p € p} (34)

where Qu(p) is the smallest set which contain the set u(p).
Above definition us valid also in the case of differential and
integral equation.

» In particular case we have system of linear equation with
interval parameters.

Qu(p) = O{u: K(p)u= Q(p),p € P} (35)
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Convex model of uncertainty

» Ben-Haim, Y., and Elishakoff, 1. (1990). Convex models of
uncertainty in applied mechanics, Elsevier, New York.

» Ellipsoidal uncertainty

2 2
= p 1%
p= {(p1,p2) : a; + b2 < 1} (36)
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Figure: Ellipsoidal uncertainty
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General set-valued uncertainty

» Let us consider equilibrium equation of beam under
tension-compression.

d du
o (EAdX> +n=0

A(x)

S

1
1
X x=L X

Figure: Rod under tension
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General set-valued uncertainty

» Uncertain Young modulus

E(x) € E(x) = [E”(x), E* ()] (38)

\ E(x)=[E (x),E*(x)]
E=E"(x)

v

X x=L

Figure: Set-valued Young modulus
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Solution of equation with set valued Young modulus

» Solution at point x (displacements)
u(x) € b(x) = [u™(x), ut(x)] = O{u(x,E) : E€ E} (39)
» Solution of discretized equations in the nodal points
ue Gu(Er) = O{u(E) : E € E} (40)
In this case E is a function E : [0,L] 3 x — E(x) € Rand E
is a functional space of functions form the interval [0, L] to R

where.

VEec Evxe 0,1, E-(x) S E(x) < EY(x)  (41)
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Solution of interval equation using endpoint combination
method

» Let us consider interval equation
f(u,p) =0, or equivalently u= u(p) (42)
» Additionally lets assume that x = x(p) is monotone, then
u™ = min{u(p”), u(ph)}, xT = max{u(p”),u(p™)} (43)

In multidimensional case in order to find the solution we have
to solve 2™ (where m is a number of uncertain parameters).

U = min{u(pli,pzi,...,plf)} (44)

ut = max{u(pi, pi, ..., pt)} (45)
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Solution of interval equation using sensitivity analysis

» Let assume that the function x = x(p) has positive derivative

du(po)
dpo >0 (46)
um =u(p”), ut =u(p?) (47)

where
po = mid(p) (48)
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Solution of interval equation using sensitivity analysis

» That algorithm can be also applied in multidimensional case

du(po)
api

>0 (49)

For example sensitivity can be calculated in the following way

K(po)u(po) = Q(po) (50)

K( O)alé(:o) _ a(ggjo) B 32550)11(,)0)

(51)

30/43



Sensitivity of the solution of the differential equation of
tension-compression problem

» That algorithm can be also applied in multidimensional case

di’x (EAZL’) ~ 0 (52)
u(0) =0, EA d‘;if) =P (53)

To the solution of that problem one can apply FEM method

up(x) = No(x)ug + Ni(x)u1 (54)

X

No(x) = (1-7), M(x) =7 (55)

where ug = 0.
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Approximation of the value of integrals by a set of discrete
values

K-u=P (56)
where .
. le(X) C/Nl(X)
K= / E(x)A(x) ™ ™ dx (57)
0
and v = uq.

K 7 EGaAGe) T a0 0D p (58)
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Sensitivity with respect to point values of Young modulus

oK (Z E()AG) le(X,)le(x,) AX’) (59)

OE(x;) dx dx
oK -~ le(X,') le(X,') o A(X,')AX,‘
GEC) S AN T T AN T T (60)
Functional derivative
oK . 1 oK A le(X,') le(X,') (61)

d E(x) - A>I<,-r10 Ax; OE(x;) ~ Ala) dx dx
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Taylor expansion of the solution

Taylor Series

du(x, po)

u(x, po + Ap) = u(x, po +Z Dol 2P+ -

Functional Taylor Series

L
ou(x,
u(x, po + 0p) ~ u(x, po) + 0/ W

\_/b
\_/
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Sensitivity analysis

Let's assume that

du(x, po) .
22 >0, for yeyr o, L 64
du(x, po) L
———2 <0, for y€ clo,L 65
55()) y €y, Clo,L] (65)
additionally
+ po(y) +op*(y) for y ey
= d 66
O ={ M) 0) v (%0)
—in_ f po(y)+dp~(y) for y ey
P (Y)‘{ poly) +3p*(y) for y €7 (67)
then

um(x) = ulx, ps), ut(x)=u(x,pS) (68)
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Example: tension problem, sensitivity with respect to E

The sensitivity can be calculated form the equation

du(po) _ 6Q(po) IK(po)

KBS = EGe) ~ 9E() P (69)

The result of calculation is the following

5U(X7 pO) _ P r
EG) By Ay ~ % fryelnd ()
then
Ef(y) = Eoly) + E~(y) (71)
Es (v) = Eo(y) + E*(y) (72)

and extreme values can be calculated by using

um(x) = u(x,ES), ut(x)=u(x, E) (73)
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Example: tension problem, sensitivity with respect to A
and E

The result of calculation is the following

du(x,po) B P -
SA) ~ EQ) Ay <O Prveld
then
Af(y) =Aoly) + A~ (y) (75)
AS (y) = Aoly) + A (y) (76)

and extreme values can be calculated by using

um(x) = u(x, Ay, E), ut(x)=u(x,AT, ES) (77)

s’ s
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Sensitivity analysis: general case
Let's assume that

5U(X7 Po)
opi(y)

5U(X, PO)
opi(y)

>0, for yG)"/;rC[O,L]

<0, for yey, C[0,L]

additionally

i + 6 T for cyr
() { poi(y) + dp; (v) yEey,

poi(y) +9p; (y) for y eyt

_ i + dp; for y eyl
= (y) { poi(y) +dp; (v) yey,

poi(y) +6p; (y) for y eyt
then

u (x) = u(x, Ps1; --Psm); u(x) = u(x, p;i_l?"'?p:_m)
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Sensitivity analysis: general case

u”(x) = u(x,ps ), ut(x) = u(x,pf) (83)

where
Py = (Po1s--Pam)s P = (P> Pam) (84)

39/43



Numerical calculation of functional derivative

dulx, po) _ u(x,po+6pi(y)) — ulx; po)
opi(y) Api(y)

(85)

A P =pu(»)+6p(y)
Ap,(»)

P, =Pu(y)

|-
»

I ! I
y ytAy =g

Figure: Function variation
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Taylor expansion method - function parameter case

Taylor series (first order method)

e, po + 89) = (o) + 3 “fj’ P) Ap(yi) (86

—~ 9p(yi)
o) = ) - 3|50 2 idptl - (e)
+ du(x, po) '
uC)" ~ uCapo) + 3|75 00 S5 1Bl (88)
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Taylor expansion method - function parameter case

Taylor series (first order method)

(. () (89)
oute. )

)7 ) =22 |ty |1 001 (0
XPo)

[Api(yi)l (91)
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Conclusions

» Using functional derivative it is possible to find solution of
equation with uncertain functional parameters.

» The method can be applied to solution of large class of
engineering problems with uncertain filed.

» The method can be applied to solution of linear and nonlinear
problems of computational mechanics with uncertain filed.

» The algorithm of sensitivity analysis method method can be
parallel.



