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1 Introduction 

The problem of optimal design consist in finding the optimum parameters „ x ” 
according to a prescribed optimality criterion 
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Existing optimization methods (solon.cma.univie.ac.at/~neum/glopt, 
plato.la.asu.edu/guide) usually aren’t reliable or can’t use the nondifferentiable and not 
continuous objective functions or constraints. An interval global optimization method 
[1,3] is: very stabile and robust, universally applicable and 100% reliable. The interval 
algorithm guarantees that all stationary global solutions have been found. 

2 Interval global optimization 

The set of all closed real intervals is denoted by I(R) and the natural interval extension 
of a real function f(x) is denoted by ( )$ .f  [2]. The interval global optimization method is 
based on the properties of interval arithmetic [2]. If the following inequality holds 
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Several techniques are used to improve the interval global optimization algorithm for 
example: a midpoint test, a monotonicity test, a concavity test, an interval Newton 
method, a parallelization, a local minimizer, a Fritz John condition and many others. 

Today exist a lot of commercial and scientific software based on the interval global 
optimiation method (compare cs.utep.edu/interval-comp/intsoft). Many information 
about interval analysis can be found on the internet (cs.utep.edu/interval-comp/main). 

In order to investigate the performance of the algorithms described above a test were 
performed for a truss shown in Fig. 70. Using interval global optimization we can find 
optimal shape of this construction. In calculation we assume that bar number 1 have a 
constant length, L=1 m, σ0 190=  MPa  and P=10 kN. The objective functions have the 
following form: 
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where Ni  are the axial forces. The optimal results are the following: xw =1.1895 m, 

yw =0.223488 m (compare Fig.1), A1 =5.493 ⋅ −10 6 m2 , A 2 =6.011 ⋅ −10 6 m2 , 
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Fig. 1. Optimal shape of truss 

A3 =7.607 ⋅ −10 6 m2 , A 4 =1.071 ⋅ −10 6 m2 , where Ai  are the cross sections of i-th bar. 
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