Applications of Autonomous Computational Methods and In Online Learning

Andrew Pownuk

Department of Mathematical Sciences University of Texas at El Paso, El Paso, Texas, USA ampownuk@utep.edu, https://andrew.pownuk.com

26th Joint UTEP/NMSU Workshop on Mathematics, Computer Science, and Computational Sciences

November 6, 2021

Outline

(1) Education

(2) Mathematics
(3) Engineering
(4) Generalizations
(5) Conclusions

Summary

- Education
- Mathematics
- Engineering
- Generalization

Online Learning

Education
Mathematics
Engineering
Generalizations
Conclusions

[9] Tools
\ominus sen out

Technology Support Helpdesk
MON-THU 7AM-9PM|FRI 7AM-BPM|SAT 9AM-2PM|SUN $12 P M-5 P M$
visit us at helpdesk.utep.edu

Subrnit a request
Chat with us

Contact us: 915-747-HELP, helpdesk@utep.edu

TECHNOLOGY Support

Early Examples of Distance Learning

Education
Mathematics
Engineering
Generalizations
Conclusions

Online Learning

Education

Mathematics
Engineering
Generalizations
Conclusions
User Main Page

	Logoff	
Username:	80080081	
First Name:	Pownuk	
Last Name:	Andrew	
Group:	2020 -Fall-MATH-1312-CRN-12219	
	Change password	
	Change e-mail	

Show my grades

Files (notes, syllabus etc.)

Online Learning (List of Students, Data Storage)

Education
Mathematics
Engineering
Generalizations
Conclusions

Return to "Edit Group"
Return to instructor page

Return to the main admin page

List of students in the group: Test group

	lastname	firstname	username	email	status	enabled	remarks	studentid
Select	Banach	Stefan	banach	andrzej@pownuk.com	student	0		3
Select	Cauchy	Louis	cauchy	andrzej@pownuk.com	student	0		4
Select	Euler	Leonhard	euler	andrzej@pownuk.com	student	1		2
Select	Hilbert	David	hilbert	andrzej@pownuk.com	student	1		6
Select	Leibniz	Gottfried	leibniz	andrzej@pownuk.com	student	1		5
Select	Newton	Isaac	newton	andrzej@pownuk.com	student	1		1
Select	Pownuk	Andrzej	pownuk	andrzej@pownuk.com	student	0		8
Select	Pownuk	Andrzej	testuser	andrzej@pownuk.com	student	1		7

Number of students in this group: 5
List of all students
Find student

Online Learning (Information about the Student)

Education
Mathematics
Engineering
Generalizations
Conclusions

-						
E2idStuden tMembership \times						
Retum to the edit student page						
Retum to edit group						
Username: newton						
Lastname: Newton						
Firstname: Isaac						
	group name	group II	enabled	stadentid	status	
Edtr Select	Test group	6	1	1	student	
$($ enabled $=0)=($ user is not enabled $)$						
Global user information						
lasmame Newton						
firstame Isaac						
number800						
userrame nevton						
password Newton123214341						
email andrejeppownk.com						
firstlogin 0						
remarks						
enabled						
$(\text { Enabled }=\text { no })=(\text { user is not enabled in the whole system })$						
-	-	"1'				

Online Learning (Online Homework)

Education

Mathematics

$\square \square$			
(3) Untitled Page	\times		
N-wnmen	\cdots	-	(ex
Edit Select	42	TG-Homework-2	/HomeworkDii/TG-Homework-2.aspx
Edit Select	43	Cal-III-Homework-13	/HomeworkDii/Cal-III-Homework-13.aspx
Edit Select	44	Cal-II-Homework-12	/HomeworkDir/Cal-II-Homework-12.aspx
Edit Select	45	AA-I-Homework-12	HomeworkDir/AA-I-Homework-12 aspx
Edit Select	46	Cal-III-Homework-14	/HomeworkDii/Cal-III-Homework-14.aspx
Edit Select	47	Cal-II-Homework-13	/HomeworkDir/Cal-II-Homework-13.aspx
Edit Select	48	AA-I-Homework-13	/HomeworkDir/AA-I-Homework-13.aspx
Edit Select	49	AA-I-Homework-14	/HomeworkDir/AA-I-Homework-14.aspx
Edit Select	50	AA-I-Homework-15	/HomeworkDir/AA-I-Homework-15.aspx

> Find Lurent series of the function $f(z)=\frac{\sin (2 z)}{z^{2}}$ at $z_{0}=0$ $a_{-1}=$ $a_{0}=$

Calculate and submit grade

Online Learning（Online Homework）

Education

Mathematics
Engineering
Generalizations
Conclusions

Online Learning (Online Visualization)

Education

Mathematics
Engineering
Generalizations
Conclusions

Figure: Solution of the heat transfer equation

Online Learning (Online Visualization)

Education
Mathematics
Engineering
Generalizations
Conclusions

Figure: Solution of the heat transfer equation

$$
\lambda\left(\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}\right)+\dot{q}=\rho c_{p} \frac{\partial T}{\partial t}
$$

Online Learning (Online Visualization)

Education

Mathematics
Engineering
Generalizations
Conclusions

$$
\left\{\begin{array}{l}
-c\left(\frac{\partial^{4} u}{\partial x^{4}}+\frac{\partial^{4} u}{\partial y^{4}}\right)+q=\frac{\partial^{2} u}{\partial t^{2}} \\
u(x, y)=0, \quad \text { for }(x, y) \in \partial \Omega \\
\frac{\partial^{2} u}{\partial x^{2}}(0, y, t)=\frac{\partial^{2} u}{\partial x^{2}}(L, y, t)=0 \\
\frac{\partial^{2} u}{\partial y^{2}}(x, 0, t)=\frac{\partial^{2} u}{\partial y^{2}}(x, L, t)=0 \\
u(x, y, 0)=u^{*}(x, y)
\end{array}\right.
$$

Figure: Vibration of plates

Sample Problem

- Find area of the parallelogram for $\bar{a}=[1,2,3]$, $\bar{b}=[3,2,1]$. Answer: $A=|\bar{a} \times \bar{b}|=4 \sqrt{6}$.
- How to input $4 \sqrt{6}$ into the system in order to provide the answer?
- It is possible to use text description of the expression. For example:
- 4 * sqrt(6)
- 4 * Sqrt[6]
- 4 sqrt(6)
- 4sqrt6
- $4 \cdot s q 6$
- etc.

Parse Tree

Education

Mathematics
Engineering
Parse tree
Generalizations
Conclusions

XML Parse Tree

Education
Mathematics
Engineering
Generalizations
Conclusions

Parse tree

| ```statement: ifStatement \| whileStatement | grammar letStatement statements: statement* ifStatement: 'if' '('expression')' '{' statements '}' whileStatement: 'while' '(' expression')' '{' statements '}' letStatement: 'let' varName 'm' expression ';' expression: term (op term)? term: varName | constant varName: a string not beg. with a digit constant: a decimal number op: '+'|'-'|'m'|'>'|'<'```
 Same parse tree， in XML | ```<whileStatement> <keyword> while </keyword> <symbol> (</symbol> <expression> <term> <identifier> count </identifier> </term> <symbol> < </symbol> <term> <intConstant> 100 </intConstant> </term> </expression> <symbol>) </symbol> <symbol> { </symbol> <statements> <letStatement> <keyword> let </keyword> <identifier> count </identifier> <symbol> = </symbol> <expression> <term> <identifier> count </identifier> </term> <symbol> + </symbol> <term> <intConstant> 1 </intConstant> </term> </expression> <symbol> ; </symbol> </letStatement> </statements> <symbol> } </symbol> </whileStatement>``` |
| :---: | :---: |

Grammar

Education

Mathematics

Engineering

Generalizations
Conclusions

```
Lexical dements: The lock largugge includes five types of termiral elements (tokens):
            keyword: 'elasa'|'eonatructor'| 'function'| mathod'I'fiseld' |'statie'|
            var'I'int'I'char'|boolean'|'vold' I'true' I'talse' I'mul\'I'this'
            'let'I'do'l'if'l'else'I'while'l'return'
```



```
    irtegerConstamt: A decimal number in the mange 0... 32767.
        StringConstant 'met A sequence of Unisode characters not including doable quote or newline 'mt
            idemifier: A sequense of letiens, digits, and underscore ('_') DSt starting with a digt.
Program structure: }\begin{array}{l}{\mathrm{ A Juck programm is a oollection of cluses, each appeurite in a sepuste fila.}}\\{\mathrm{ The compilation unit is a class. A doss is s sequence of tokers structured}}
    The compilation unit is a class. A clsss is a sequ
            (static' |field') type varName (','varName)* 's'
            yp: 'Int' 'char' boolean' claxNume
    subroutineDw: ('aonstructor'|'function'|'me thod) (roid'| type) subroutineNume
                ('pornmeterList ]' subuoutimeBody
    parameverLis: ((type varName) C.''0pe varNarme)*)?
    suterutineBoty: 'f'varDec* stivments '}'
            varDes: 'var' tgpe vaName (','vuName)*";
            clussName: itensifier
    mebroutineName:
            varkame:
        identfi|er
        identifier
Statements:
            satements: statemen*
            stailment: JetSatement|ifStatoment whileStaiement| doStajement |rebumStavement
        jetStatement: 'Iet' vaNsmn (C' expression 'J'?' =' Exprussion ';'
            ifflatement: 'if''C expression ') '1' 'statements 'Y' ('blse' 'f'statements'Y' Y?
    whalestatument:
        doStatement:
    ReturnStakment
Expresslons:
exprestion: term (op term) \({ }^{*}\)
term: integurConstant | stringConstant | keywordConstars | varName varName '['expression']'| subroutiteCall |'('expression ')'| wraryOp tem
```



``` ' C 'experssionlist T '
expressionL ist: (expresion ( \({ }^{\prime}\) ' experssion)* \({ }^{*}\) )
```



```
unaryop:
'-1 16
KeywordConstant: 'true'|'false' auli' this

\section*{Infix notation, Prefix notation, Postfix notation}

Different notation for arithmetic expressions.
- Infix notation \((5+6) \times 7\)
- Prefix notation \(x+567\)
- Postfix notation \(756+x\)

Typical evaluation process of arithmetic expressions.
- InfixToPrefix \(((5+6) x 7)=x+567\)
- EvaluatePrefix \((x+567)=77\)

\section*{Expression Tree}

Education
Mathematics
Engineering
Generalizations
Conclusions


\title{
How to Evaluate Mathematical Expression Given as a String?
}

\section*{Education}

Example
- Expression: \(\operatorname{sqrt}(2)^{*} 6\)
- Value: \(\sqrt{2} \cdot 6\)

Example
- Expression: sqrt2*6
- Value: \(\sqrt{2} \cdot 6\)

Example
- Expression: Sqrt[2]6
- Value: \(\sqrt{2} \cdot 6\)

Example
- Expression: SQRT[2]6
- Value: \(\sqrt{2} \cdot 6\)

\section*{Automated Generation of Homework Assignments}

Differentiation, vector algebra, numerical integration, etc.
- Automatically generated list of formulas with given level of difficulty.
- Latex representation of given formula.
- Evaluation of formulas and generation of tests.
- Appropriate HTML code which implements all elements.
- Upload to server and add integrate with the grading system for appropriate group of students, due dates.

\section*{Theoretical Aspects of Online Learning}

Education
Mathematics
Engineering
Generalizations
Conclusions

Journal of Uncertain Systems
Published by print and online quarterly, England, UK
ISSN: 1752-8909 (print)
ISSN: 1752-8917 (online)
World Academic Press, World Academic Union

Home
Authors Guide
Subscription
Online Journal
Link

\section*{Home}
- A. Pownuk, Mathematical aspects of grading student's homework in on-line web applications, Journal of Uncertain Systems, 5(2), 141-153, 2011.

\section*{COCONUT Project (Vienna University)}

Mathematics
Engineering
Generalizations
Conclusions

AMPL (A Mathematical Programming Language) is an algebraic modeling language to describe and solve high-complexity problems for large-scale mathematical computing.

\section*{\#VARIABLE DEFINITIONS}
var x_1;
var x_2;
\#OBJECTIVE FUNCTION (maximize or minimize)
maximize value: x_1 + 2*x_2;
\#CONSTRAINTS
subject to condition_1: x_1 + \(3 * x_{-} 2<=20\);
subject to condition_2: 3*x_1 + x_2 <= 20;
subject to condition_3: \(\mathrm{x} \_1\) >= 0;
subject to condition_4: x_2 >= 0;

\section*{COCONUT Project (Vienna University)}

The optimization problems stored in the work nodes, which are passed to the various inference engines, are kept as directed acyclic graphs (DAG), as well. This representation has big advantages. Hereby, a complete optimization problem is always represented by a single DAG. The vertices of the graph represent operators similar to computational trees. Constants and variables are sources, objective and constraints are sinks of the DAG.
https://www.mat.univie.ac.at/~neum/glopt/coconut/

\section*{COCONUT Project (Vienna University)}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

https://www.mat.univie.ac.at/~neum/glopt/coconut/

\section*{COCONUT Project (Vienna University)}

\section*{Education}

Mathematics

\section*{Engineering}


Figure: Modeling of engineering problems with uncertainty
A. Neumaier and A. Pownuk, Linear Systems with Large Uncertainties, with Applications to Truss Structures, Journal of Reliable Computing, 13(2), 149-172, 2007.

\section*{SAGA - Scientific Computing with Algebraic and Generative Abstractions}

Mathematics
Engineering
Generalizations
Conclusions

Algebraic software methodologies are a result of the last 20-30 years investigation into abstract data types and algebraic development techniques. The algebraic concepts also abstract modern program structuring mechanisms like classes and generic (or template) modules of object-oriented programming languages such as C++, Generic Java and Fortran-2000.

https://www.ii.uib.no/saga/

\section*{SAGA - Scientific Computing with Algebraic and}

\section*{Generative Abstractions}

\section*{Mathematics}
- Sapphire: For the quick prototyping of mathematical models an algebraic programming language and a compiler that translates recursive functions into non-recursive, imperative code was developed. This allows us to code the recursive equations of the mathematical formulation of a solver directly as recursive functions and compile this for both sequential and parallel HPC computers.
- Sophus: This is a software library written in C++ and carefully designed to mimic the abstract structure of the PDE mathematics.
- CodeBoost: This is a software transformation system being developed to address the gap between well formed code (from a software engineering point of view) and efficient code (from a run-time point of view).

\section*{Fuzzy/Interval Calculator}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

Insert a description of interval and fuzzy expressions and press "Calculate" button. [USER'S MANUAL]

Calculate The result is:
```

1+2*}([0,1]+1
{[0,1,5],[1,2,3]}+[1,2]*2

```

```


The program evaluate the value of expressions

which contain floating-point, interval and fuzzy numbers.

1+2\times(2+5) Floating-point expression.

[1,2]+[2,3] Interval numbers are defined using upper (Ymax) and lower (Xmin) bounds e.g. [Xmin, Xmax].

By default the + operator is assumed between the lines.

These two lines are equivalent to the expression 1+2*(2+5) + [1,2]+[2,3].

\# ([0,1,5], [1,2,31) Euzzy number is a collection of alpha-cuts,

\#{[0,1,5], [1,2,3]}+[1,2]*2 Composite expression can have floating-point, interval and fuzzy numbers.

It is possible to add an operator between the lines.

1+2

[1,2]+[2,3]

These two lines are equivalent to the expression l+2 * [1,2]+[2,3].

The final result is a value of the expression which is created

from all the data in the data file.

```

\section*{http://www.math.utep.edu/Faculty/ampownuk/php/ fuzzy_calculator/}

\section*{Interval Arithmetic}

\section*{Education}

An binary operation \(\star\) on two intervals, such as addition or multiplication, is defined by
\[
\left[x_{1}, x_{2}\right] \star\left[y_{1}, y_{2}\right]=\left\{x \star y \mid x \in\left[x_{1}, x_{2}\right] \wedge y \in\left[y_{1}, y_{2}\right]\right\}
\]
- Interval addition \(\left[x_{1}, x_{2}\right]+\left[y_{1}, y_{2}\right]=\left[x_{1}+y_{1}, x_{2}+y_{2}\right]\)
- Interval multiplication
\[
\begin{aligned}
& {\left[x_{1}, x_{2}\right] \star\left[y_{1}, y_{2}\right]=\left[z_{1}, z_{2}\right] \text { where }} \\
& z_{1}=\min \left\{x_{1} \star y_{1}, x_{1} \star y_{2}, x_{2} \star y_{1}, x_{2} \star y_{2}\right\}, \\
& z_{2}=\max \left\{x_{1} \star y_{1}, x_{1} \star y_{2}, x_{2} \star y_{1}, x_{2} \star y_{2}\right\} .
\end{aligned}
\]
- Interval division
\[
\frac{\left[x_{1}, x_{2}\right]}{\left[y_{1}, y_{2}\right]}=\left[x_{1}, x_{2}\right] \cdot \frac{1}{\left[y_{1}, y_{2}\right]}
\]

\section*{Fuzzy/Interval Calculator}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


DSL - Domain Specific Language

\section*{Fuzzy/Interval Calculator}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

DSL for description of fuzzy and interval numbers.
Input:
\(1+2 *([0,1]+1)\)
\(\{[0,1,5],[1,2,3]\}+[1,2] * 2\)
Output:
\(\{\quad[0,6,14] \quad[0.25,6.25,13.5]\)
\([0.5,6.5,13] \quad[0.75,6.75,12.5]\)
\([1,7,12]\}\)

\section*{Fuzzy Random Variables}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


\section*{Differential Equations with Uncertain Parameters}


Figure: Second order differential equation

\section*{Differential Equations with Uncertain Parameters}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


Figure: Input parameters

\section*{Online Learning (Numerical Analysis, 1998)}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


Figure: Web application for teaching of the fininte element method. Description of the problem was given in some DSL.

\section*{Teaching (Computer Methods in Mechanics)}

\section*{Education}

\section*{Mathematics}

Engineering

Lagrangian Mechanics

\[
\frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)=\frac{\partial L}{\partial q_{j}}
\]

Computer methods for finding analytical formulation of the equations of motion in multibody dynamics.

\section*{Teaching (Computer Methods in Mechanics)}

\section*{Education}

Mathematics
Engineering


Computer algebra software (Mathematica, Derive, etc.) for numerical methods in the theory of plates.
\[
\frac{2 E h^{3}}{3(1-\nu)}\left(\frac{\partial^{4} w}{\partial x_{1}^{4}}+2 \frac{\partial^{4} w}{\partial x_{1}^{2} \partial x_{2}^{2}}+\frac{\partial^{4} w}{\partial x_{2}^{4}}\right)+q+2 \rho h \frac{\partial^{2} u}{\partial t^{2}}=0
\]

\section*{Teaching (Computer Methods in Mechanics)}

\section*{Education}

\section*{Mathematics}

Engineering
Generalizations
Conclusions

Computer algebra software (Mathematica, Derive, etc.) for numerical methods in the theory of linear elasticity.
\[
\begin{aligned}
& \frac{1}{2(1-\nu)(1-2 \nu)}\left(2(1-\nu) \frac{\partial^{2} u_{x}}{\partial x^{2}}+\frac{\partial^{2} u_{y}}{\partial x \partial y}+\right. \\
& \left.+(1-2 \nu) \frac{\partial^{2} u_{x}}{\partial y^{2}}\right)+b_{x}=0 \\
& \frac{1}{2(1-\nu)(1-2 \nu)}\left(2(1-\nu) \frac{\partial^{2} u_{y}}{\partial y^{2}}+\frac{\partial^{2} u_{x}}{\partial x \partial y}+\right. \\
& \left.+(1-2 \nu) \frac{\partial^{2} u_{y}}{\partial x^{2}}\right)+b_{y}=0
\end{aligned}
\]

\section*{Teaching (Computer Methods in Mechanics)}
- Partial diffrerential equations of elasticity.
- Partial diffrerential equations of plasticity.
- Partial diffrerential equations of viscoelaticity.
- Partial diffrerential equations of the theory of shells and appropriate theory in curvilinear coordinate systems.
- The theory of thin-walled structures.
- Adaptive mesh refinement.
- The theory of variational equations related to the contact mechanics.
- The theory of crack mechanics (fracture mechanics).
- The theory of heat transfer and multiphysics problems.
- etc.

\title{
Calculation of the Interval risk by Using Petri Networks and interval Probability
}

\section*{Education}

\section*{Mathematics}

Engineering


Figure: DSL for description of the engineering problem
M. Betkowski and A. Pownuk, Calculating risk of cost using Monte Carlo simulation with fuzzy parameters in civil engineering, Proceeding of the NSF Workshop on Reliable Engineering Computing, Savannah, Georgia, USA, 179-192, September 15-17, 2004.

\section*{Interval Finite Element Method for the Truss Structures}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

Description of the problem:


Description of interval parameters (help)
MP, EX, 1, 5
\(\mathrm{R}, 1,5\)
© Sensitivity analysis method
Calculate
http://www.math.utep.edu/Faculty/ampownuk/php/ ansys2interval/ansys-code.php

\title{
Interval Finite Element Method for the Truss Structures
}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

\section*{Results:}

http://www.math.utep.edu/Faculty/ampownuk/php/ ansys2interval/ansys-code.php

\title{
Interval Finite Element Method for the Truss Structures
}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

ANSYS Parametric Design Language (APDL)
MP, EX, 1, 2.1e+11
R, 1, 0.0025
MAT 1
REAL 1

Extension of the ANSYS Parametric Design Language (APDL) which describes uncertainty of parameters.

MP, EX, 1, 5
R, 1, 5
...

\section*{Interval Finite Element Method for the 2D Linear Elasticity Problems}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions



Figure: Solution of system of partial differential equations

\section*{Interval Finite Element Method for the Truss Structures}

A. Pownuk, Numerical solutions of fuzzy partial differential equation and its application in computational mechanics, In: M. Nikravesh, L. Zadeh and V. Korotkikh, (eds.), Fuzzy Partial Differential Equations and Relational Equations: Reservoir Characterization and Modeling, 308-347, Springer 2004.

\section*{Chevron Oil Company}

Mathematics

Engineering
Generalizations
Conclusions


Figure: Research for Chevron Oil Comapny

\section*{Commercial FEM Software for Designing Truss and Frame Structures}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


\section*{FEM Equations form APDL}

\section*{Education}

\section*{Mathematics}

Engineering


Figure: Sample engineering structure
http://www.math.utep.edu/Faculty/ampownuk/php/ fem-equations/fem-equations.php

\section*{FEM Equations form APDL}

\section*{Education}

Mathematics
Engineering
Generalizations

\section*{Conclusions}

- Generate Equations

Calculate

Figure: APDL description of engineering problem
http://www.math.utep.edu/Faculty/ampownuk/php/ fem-equations/fem-equations.php

\section*{FEM Method}

\section*{Education}

Mathematics
Engineering
Generalizations
\[
\begin{gathered}
\frac{d}{d x}\left(E A \frac{d u}{d x}\right)+n=0, u(0)=0, u(L)=0 \\
\int_{0}^{L} \frac{d}{d x}\left(E A \frac{d u}{d x}\right) v d x+\int_{0}^{L} n v d x=\int_{0}^{L} 0 v d x, u(0)=0, u(L)=0 \\
\int_{0}^{L} \frac{d}{d x}\left(E A \frac{d u}{d x}\right) v d x= \\
=\int_{0}^{L} E A \frac{d u}{d x} \frac{d v}{d x} d x+E A \frac{d u(0)}{d x} v(0)-E A \frac{d u(L)}{d x} v(L)
\end{gathered}
\]
etc.

\section*{Local Stiffness Matrix}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions

\section*{1D Truss Element}


1D element
\[
K=\left[\begin{array}{cc}
\frac{E A}{L} & -\frac{E A}{L} \\
-\frac{E A}{L} & \frac{E A}{L}
\end{array}\right]
\]

2D element
\[
K=\left[\begin{array}{cccc}
\frac{E A}{L} & 0 & -\frac{E A}{L} & 0 \\
0 & 0 & 0 & 0 \\
-\frac{E A}{L} & 0 & \frac{E A}{L} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\]
etc.

\section*{Global Stiffness Matrix}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions
```

$\mathrm{K}\left[\begin{array}{cc}1 & 1\end{array}\right]=((E[4] * A[4]) / 1.414214) * 0.500000+(E[5] * A[5]) / 1.000000$
$K\left[\begin{array}{ll}1 & 2\end{array}\right]=((E[4] * A[4]) / 1.414214) *(-0.500000)$
$K\left[\begin{array}{ll}1 & 3\end{array}\right]=((E[5] * A[5]) / 1.000000) *(-1.000000)$
$K\left[\begin{array}{ll}1 & 4\end{array}\right]=0.000000$
$K\left[\begin{array}{ll}2 & 1\end{array}\right]=((E[4] * A[4]) / 1.414214) *(-0.500000)$
$\mathrm{K}\left[\begin{array}{ll}2 & 2\end{array}\right]=(\mathrm{E}[1] * \mathrm{~A}[1]) / 1.000000+((\mathrm{E}[4] * \mathrm{~A}[4]) / 1.414214) * 0.500000$
$K\left[\begin{array}{ll}2 & 3\end{array}\right]=0.000000$
$K\left[\begin{array}{ll}2 & 4\end{array}\right]=0.000000$
$K\left[\begin{array}{cc}3 & 1]=((E[5] * A[5]) / 1.000000) *(-1.000000) ~\end{array}\right.$
$K\left[\begin{array}{ll}3 & 2\end{array}\right]=0.000000$
$\mathrm{K}\left[\begin{array}{cc}3 & 3\end{array}\right]=((\mathrm{E}[3] * \mathrm{~A}[3]) / 1.414214) * 0.500000+(\mathrm{E}[5] * \mathrm{~A}[5]) / 1.000000$
$K\left[\begin{array}{ll}3 & 4\end{array}\right]=((E[3] * A[3]) / 1.414214) * 0.500000$
$K\left[\begin{array}{ll}4 & 1\end{array}\right]=0.000000$
$K\left[\begin{array}{ll}4 & 2\end{array}\right]=0.000000$
$K\left[\begin{array}{ll}4 & 3\end{array}\right]=((E[3] * A[3]) / 1.414214) * 0.500000$
$K\left[\begin{array}{ll}4 & 4]\end{array}\right](E[2] * A[2]) / 1.000000+((E[3] * A[3]) / 1.414214) * 0.500000$

```

\section*{How to Efficiently use Available Tools?}

\section*{Education \\ Mathematics \\ Engineering \\ Generalizations \\ Conclusions}


Figure: Tools in the past


Figure: Tools now

\section*{Advantages of the Automated Computational Methods}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


Automation of some part of the engineering computational process:
- faster design,
- more optimal products,
- cheaper engineering structures.

\section*{Advantages of the Automated Computational Methods}

\section*{Education}

Mathematics
Engineering
Generalizations
Conclusions


Some part of the the computational algorithms can be automated. There are several benefites of this process:
- calculations are faster,
- it is possible to analysie more results,
- it is possible to solve some problems with high complexity.

\section*{Conclusions}

\section*{Education}

\section*{Mathematics}

Engineering
- Syntax and grammar analysis of the mathematical statements can improve online learning systems.
- Some optimization problems and some aspects of theory of partial differential equations can be can be solved automatically by using special software methodologies.
- Automated development of mathematical models speeds up calculations and and software development.

\section*{Thank You}```

