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Abstract

There are many problems in which the available information is not precise enough to justify the use of numbers. In many engineering
problems we cannot precisely measure the exact values of loads (e.g. wind loads, weight of vehicle etc.), material constant (particularly in
bimechanics, geomechanics, wall structures, concrete structures and composite structures) and geometric characteristic (tolerances).

In this paper to modelling of uncertain parameters random set theory was applied. Additionally a new algorithm of calculation
bending moment envelope was presented. This algorithm is based on the finite element method.
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1. Introduction

Let us consider mechanical system, which is shown in the
Fi
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Fig. 1

This is well known that the displacement in the rod can be
calculated using the following formula

u(x):% )

Now we can calculate the logarithmic derivative.
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The increments have different sign. Because of that the extreme
relative error can be calculated in the following way
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Let’s assume that the relative error of each parameter is equal to
5%. We can see that the relative error of displacement is equal to
20%. This is a big error and it cannot be neglect in calculations.
This simply example shows that the uncertainties cannot be
neglected in calculation.

The approximation errors in the calculation can be reduce (using
adaptive methods) to 0.1% in linear elasticity [E and 5% in
plasticity .

The error cased by the uncertain parameters is much bigger than
the approximation errors.

In geomechanics the uncertain parameters are known with
accuracy, which is equal to 20%. If we apply civil engineering
code the error is even bigger (about 100-200% in the worst case).

2. Modelling of uncertain parameters using intervals

One of the simplest ways of representation of uncertain or
inexact data, as well as inexact computations with them, is based
on intervals. In this approach, an uncertain (real) number is
represented by an interval (a continuous bounded subset) of real
numbers which pre-sumably contains the unknown exact value of
the number in question. Despite its simplicity, it conforms very
well to many practical situations, like tolerance handling or
managing rounding errors in numerical computations.
Additionally, estimation of upper and lower bound of some
physical quantity is sufficiently simple. If we want to calculate a
probability density function we have to know a lot of
measurement. If we want to define an interval we have to know
only two numbers (upper and lower bound).

It can be shown that the method which is based on interval
parameters give the same result that the semi-probabilistic
methods [Eﬁ (in some cases).
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3. Calculation of bending moment envelop using sensitivity
analysis

3.1. Calculation of displacement

Let us consider linear elastic model of the structure with
interval parameters. The finite element method lead to the
following system of equilibrium equations

K(ha=Q(h), hOh @)

where

K — stiffness matrix,

Q — load vector,

g — displacement vector,

h — vector of uncertain parameters,

h= [hl_,h1+] x..x[hy »hn-:] vector of interval parameters.

Upper and lower bound of the displacement can be calculated
using the following formula:

gi =inf{gj(h):hOh} (5)

q; =supigi(h):hOhy (6)

It can be shown that in some cases relation between the
displacement ¢; and uncertain parameter h j 1s monotone [E] If

the functions gj =q;(...,h j---) are monotone, then the extreme
values of displacements @ ﬂ) can be calculated using only
endpoints of the intervals ﬁi = [hi_,hi+] .

Sensitivity of displacements can be calculated using the following
equation
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Now we can define the following sign vectors
i . (0qj .
s' =sign| =L | i=1,...,n 8
o) .
where
i .| ogj .
st =sign| —~ | j=1,....m 9
j=sion| 5| ©

Now we can calculate the number of different vectors

s' =[sli S;n]. We can define the “Index” vector in the

following way:

NumberOflntervalSolution=1;
Index(1)=1;
for(i=2; i<=n; i++)
{
j=0; st=0;
while ( j<=1)&&(st==0) )

{

s
i{f (S ==5G))
Index(i)=j;
st=1;
15
1
if(st==0)

{
Index(i)=i;
NumberOflntervalSolutiont++;
}
35

Now we can calculate the interval displacement, which are
connected witch each independent sign vector S(i).

i=0;
for(i=1; i<=n; i++)

if( Index(i) ==1)
{

j++
IntervalSolution(j)=CalculateIntervalSolution(S(i));
IntervalSolutionIndex(i) = j;
}
else
IntervalSolutionIndex(i) = IntervalSolutionIndex(Index(i));

¥
The vector ,IntervalSolution” contains all interval solutions.
(SG)=s', (i) = s}):

Procedure “IntervalVector CalculateIntervalSolution(int i)”

calculate interval solution using given vector s'.

IntervalVector CalculatelntervalSolution(IntVector S)
{

IntervalVector IntervalSolution(n);

long j;

/* Calculate upper bound */

for(=1; j<=m ; j++)

i S(j)>=0)
h(i)=IntervalH(i).upper;
else
h(i)=IntervalH(i).lower;
IR
CalculateGlobalStiffnessMatrix(K,h);
CalculateGlobalLoadVector(Q,h);
/* Solution of the equation Kg=Q */
g=Solution(K,Q);
for(j=1;j<=n;j++)
IntervalSolution(j).upper = q(j);

/* Calculate lower bound */
for(G=1; j<=m ; j++)

if( SG)>=0)
h(j)=IntervalH(j).lower;

else
h(j)=IntervalH(j).upper;



s

CalculateGlobalStiffnessMatrix(K,h);

CalculateGlobalLoadVector(Q,h);

/* Solution of the equation Kq=Q */

q=Solution(K,Q);

for(=1;j<=n;j++)
IntervalSolution(j).lower = q(j);

return IntervalSolution;
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The interval displacement can be calculated using the following
algorithm:

for(i=1; i<=n; i++)

Interval temp;
temp = IntervalSolution(IntervalSolutionIndex(i), i);
IntervalDisplacement(i) = temp;

3
3.2. Calculation of bending moment envelop

Let us consider a rod structure. A bending moment in the
straight element “e” can be calculated in the following way

X
M0 = ME(0)~ o ()x~t) (10)
0

where M ¢ (0) is a value of the bending moment in the first node

in the element and q° (t) is a continuos load.

If we consider uncertain parameters we can write the following
equation

X
Me(x,h)zlvle(o,h)—J'qe(t,h)[(x—t)dt (11)
0

The bending moment envelope can be defined using the
following equations

M &7 (x) =inf {M&(x,h): hOh} (12)

M &* (x) = sup{M & (x,h): h O R} (13)

e

Nodal forces in the element “e” Qg can be calculated using

local stiffness matrix K®, local load vector Qe and local

displacement vector q®
QR =K°g"-Q° (14)

One of the coefficients of the vector Q% is equal to £+ M € (0,h).

Because of this, if we know the vector Q% we know the number

M€ (O, h) . Extreme value of the moment can be calculated using
sensitivity analysis.

X

OME (x.h) _ aME(0.h) Iaqe(t’h) (x - t)t (15)
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7 can be calculated using equation (14)
i

aQeR =0Ke e+Ke aqe _aQe

(16)
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can be calculated directly.
Extreme values of the bending moment can be calculated in the
following way.

/* Calculate derivative of bending moment - equation */
for(i=1; j<=m.; j++)
{

DKe = DerivativeOfLocalStiffnessMatrix(e,j);

Ke = LocalStiffnessMatrix(¢);

DQe = DerivativeOfLocalLoadVector(e,j);

Dge = DerivativeOfLocalDisplacementVector(e,j);

/* Derivative of nodal forces - equation (@*/

DQR = DKe*qet+Ke*Dqge-DQe;

e 9Q% (0,h

oM €(0,h) using Qg (0,h)
oh; oh;

DMO0 = DQR(3); /* 2D problem */

DMq = CalculateDerivativeOfLoad(x,e,));

/

/* Calculate

/* Calculate derivative of M€ (0) - equation */
DM(j)=DM0-+DMgq;
SignOfDerivativeM(j)=Sign( DM(j) );

I

/* Calculate upper value of the bending moment */
j=0; st=0;
while( (j<=NumberOfIntervalSolution )&&(st==0) )

s
if ( SignOfDerivativeM == S(j) )
{
st=1;
int IndexTemp;
IndexTemp = IntervalSolutionIndex( j );
IntervalDisplacement=IntervalSolution(IndexTemp);

}

else

NumberOflntervalSolution++;
IntervalDisplacement=
CalculatelntervalSolution(SignOfDerivativeM);



IntervalSolution(NumberOfIntervalSolution)=
IntervalDisplacement;
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15
qe = LocalDisplacement( IntervalDisplacement, e);

Ke = CalculateLocalStiffnessMatrix(e);

Qe = CalculateLocalLoadVector(e);

/* Calculate nodal forces — equation */
QRe=Ke*qe-Qe;

MO0e=QRe(3); /* 2D problems */

/* Equation (L7) */
Mx=CalculateBendingMoment(x,e);

/* Extreme value of bending moment — equation */
Mmax=M0e+Mx;

4. Calculation of reliability of structures using random sets

Let U be a universal nonempty set of a variable u under
consideration and P(U) the power set of U. In random set theory
(and Dempster-Shafner theory), available evidence can be
expressed by a basic probability assignment on P(U), i.e. by a set
of function m:PU) - [0,1]such that m(@d)=0 and

Z m(A)=1. This function can be considered as a
AOP(U)

probability measure defined on a universal set Z related to U
through a multivalued mapping :Z — P(U). So for each set

AOP(U), the value m(A) express the probability of z = r! (A)
and it does not exclude that the singletons of A can get additional
probability deriving from other subsets B of U so that

AnBz0O. Each set AOPU) for which m(A)>0 is called
focal element. A finite support random set on U is a pair (=,m),
where m is a basic probability assignment on P(U) and = is
the family of focal elements induced by m [@]

As = is a class of subset of U, we cannot generally calculate
the probability of singleton uJU or of generic subset E U .
Nevertheless we can calculate an upper and lower bound of this
probability, called Plausibility PI(.)) and Belief Bel(.)

respectively:

Bel(E) < Pro(E)<PI(E), OEOU (18)
where

Bel(E) :ZA:ADE m(A) (19)
PI(E):ZA:AnE::D m(A) 20)

When the experimental data are uncertain, then we can calculate
upper probability of failure [EI]

P{ =Pl(g()<0)=) ® @1)

R m
X:g(X) N (—o0, 0120

where XO=. = is a family of uncertain measurements [B]. The

number PfJr can be calculated using Monte Carlo simulations.

The condition g(X)n (-«,0]20 can be check using the
procedures, which were described above. The extreme value of
limit state function g(X) can be find using sensitivity analysis.

- = .- 6_g oot e a_g
g =g (x,agn[axD, s g (x,ﬂgn[axjj (22)

5. Conclusions

Taking into account uncertainty of parameters is a very
important matter. The error, which is generated by the uncertainty
of parameters (in many cases) is greater than approximation
errors. In this paper a new method of calculation of reliability is
presented. This method is based on the theory of random set and
Monte Carlo simulation. In computation of the extreme values of
bending moment and displacements sensitivity analysis were
applied. The examples of application will be presented on the
conference. Presented method can be applied to nonlinear
problems of computational mechanics.
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