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Abstract—In this paper a new method for solution of the
interval equations of dynamics will be presented. In this ap-
proach, in order to estimate upper (y) and lower bound (y)
of the solution y = y(t, p) it is necessary to create approx-
imation yapprox = yapprox(t, p0, ..., pn, p) (p0, ..., pn are some
point values, and y ≈ yapprox). Then this approximation can
be applied for calculation of yapprox and yapprox. It is also
possible to get reliable inner estimation yinner and yinner of
the solution. Using the differences yapprox − yinner , yapprox −
yinner it is possible to control accuracy of the calculations.
This method gives the possibility to calculate combinations
of parameters (pmin

approx(t), p
max
approx(t), p

min
inner(t), p

max
inner(t)), which

generate both interval solutions (i.e. yapprox = y(t, pmin
approx(t)),

yapprox = y(t, pmax
approx(t)), yinner = y(t, pmin

inner(t)), yinner =
y(t, pmax

inner(t))). This is very useful in applications of the interval
methods.

I. SOLUTION SET OF THE INTERVAL EQUATIONS

Let us consider equation

F (y, t, p) = Q(t, p) (1)

(algebraic, differential, integral, etc.) where x ∈ Rn, p ∈ p ⊂
Rm. Solution set of the equation (1) can be defined in the
following way [1], [5]

y(t) = {y(t, p) : F (y, t, p) = Q(t, p) , p ∈ p} (2)

y(t) = min y(t), y(t) = max y(t) (3)

Interval solution may be also defined as a solution of the
following optimization problems

y(t) =

 min y(t, p)
F (y, t, p) = Q(t, p)
p ∈ p

(4)

y(t) =

 max y(t, p)
F (y, t, p) = Q(t, p)
p ∈ p

(5)

pmin(t) = argmin

 min y(t, p)
F (y, t, p) = Q(t, p)
p ∈ p

(6)

pmax(t) = argmax

 max y(t, p)
F (y, t, p) = Q(t, p)
p ∈ p

(7)

y(t) = y(t, pmin(t)), y(t) = y(t, pmax(t)) (8)

Presented definition was applied to the solution of many
equations with the interval parameters [1], [2], [3], [4].

II. THE USE OF MONOTONICITY

A. Free vibrations
Let us consider the following differential equation

d2y

dt2
+ ω2y = 0 (9)

where ω2 = k
m . Let’s assume that y(0) ∈ [1, 2], dy(0)

dx ∈ [1, 2]
and ω = 1. In this case we have two interval parameters p1 =
y(0) and p2 = dy(0)

dt additionally derivative with respect to
each uncertain parameter ∂y

∂p1
, ∂y
∂p2

have constant sign. Because
of that it is possible to calculate the solution exactly by using
appropriate endpoints of the parameters.

y(t) =


1 cos(t) + 1 sin (t) , t ∈

[
0, π

2

]
2 cos(t) + 1 sin (t) , t ∈

[
π
2 , π

]
2 cos(t) + 2 sin (t) , t ∈

[
π, 3π

2

]
1 cos(t) + 2 sin (t) , t ∈

[
3π
2 , 2π

] (10)

ȳ(t) =


2 cos(t) + 2 sin (t) , t ∈

[
0, π

2

]
1 cos(t) + 2 sin (t) , t ∈

[
π
2 , π

]
1 cos(t) + 1 sin (t) , t ∈

[
π, 3π

2

]
2 cos(t) + 1 sin (t) , t ∈

[
3π
2 , 2π

] (11)

The interval solution y(t) = [y(t), ȳ(t)] is shown on the Fig. 1.
It is interesting to note that the interval solution is continuous
but non-differentiable. Interval solution can be created by
using 4 different point solutions (compare Fig. 2). Because the
function y = y(t, p) is monotone (as a function of variable p),
the interval solution is exact. It is possible to verify the interval
solution by using more simulations (compare Fig. 3). For each
timestep t it is possible to find such combination of parameters
pmin(t), pmax(t) such that (compare equation (8))

y(t) = y(t, pmin(t)), y(t) = y(t, pmax(t)) (12)

Specific form of the formulas (12) is shown in the equations
(10, 11). Because the solution is monotone (with respect to
the variables p, then the functions pmin(t),pmax(t) have finite
number of values. If we know these functions we can calculate
the interval solution (if appropriate method of solution exist).



Fig. 1. Interval solution of the equation 9

Fig. 2. Interval solution of the equation 9 can be calculated by using 4
solutions

B. Damped vibrations

Let us consider the following differential equation

dy2

dt2
+ 2β

dy

dt
+ ω2

0y = 0 (13)

General solution of that equation can be written in the follow-
ing form

y = Ae−βt sin (ωt+ φ) (14)

In calculations we assume that A ∈
[
A,A

]
= [1, 2], β ∈

[0.5, 0.6], φ = 0, ω = 1. In this case the solution is also
monotone with respect to the interval parameters. Because
of that, it is possible to calculate the exact solution in the
following way

y(t) =


1e−0.5t sin (t) , t ∈

[
0, π

2

]
1e−0.6t sin (t) , t ∈

[
π
2 , π

]
2e−0.6t sin (t) , t ∈

[
π, 3π

2

]
2e−0.5t sin (t) , t ∈

[
3π
2 , 2π

] (15)

ȳ(t) =


2e−0.6t sin (t) , t ∈

[
0, π

2

]
2e−0.5t sin (t) , t ∈

[
π
2 , π

]
1e−0.5t sin (t) , t ∈

[
π, 3π

2

]
1e−0.6t sin (t) , t ∈

[
3π
2 , 2π

] (16)

The interval solution y(t) = [y(t), ȳ(t)] is shown on the Fig.
4. In order to get the exact interval solution it is enough to
find only 2 solutions (compare Fig. 5).

Fig. 3. Interval solution of the equation 9. 10 solutions which can be used
as veryfication of our results.

Fig. 4. Interval solution of the equation 13.

C. Free vibrations - non-monotone solution

Let us consider the equation (9) with the following initial
conditions y(0) = 0, dy(0)

dt = ω = p ∈ [0.5, 0.6]. The solution
is shown on the Fig. 6. In this case the sign of partial derivative
∂y
∂p is not constant. Because of that, it is not possible to get
the interval solution by using finite number of point solutions
(compare Fig. 6). If we try to calculate the solution by using
equations y(t) = y(t, pmin(t)), y(t) = y(t, pmax(t)), then the
functions pmin(t), pmax(t) have infinitely many values, which
is a big problem in calculations and future applications. In
other words, it is not possible to get the exact interval solution
[y(t), y(t)] by using finite number of point solutions (compare
Fig. 6).
In application it is important to find the interval solution
[y(t), y(t)] as well as appropriate combinations of parameters
pmin(t), pmax(t), which generate these solutions.

III. NUMERICAL METHOD

In previous section we discussed analytical methods for
solution of differential equations. Unfortunately in applications
usually it is not possible to get the analytical solution. In
that situations we have to apply the numerical methods.
Let us consider a system of first order parameter dependent
differential equations

dy
dt = f(t, y, p)
x(0, p) = x0(p)
p ∈ p

(17)



Fig. 5. Interval solution of the equation 13 can be calculated exactly by
using point solutions.

Fig. 6. Interval solution of the equation 13 can be calculated exactly by
using point solutions.

Partial derivative with respect to the uncertain parameter
vi =

∂y
∂pi

satisfy the following differential equation.
dvi

dt = ∂f(t,y,p)
∂p + ∂f(t,y,p)

∂y vi

vi(0, p) = v0i(p) =
∂x0(p)
∂pi

p ∈ p

(18)

If the function y = y(t, p) is monotone (with respect to the
variable p), then in order to find the interval solution it is
necessary to find the solution of the equation (18) for the mid
point p0 = mid(p) (i.e. y = y(t, p0) and vi = vi(t, p0). Then
it is necessary to find all combinations of parameters, which
correspond to the sign of the function of vi = vi(t, p0) =
∂y(t,p0)

∂pi
.

p(t)min = p
i
, p(t)max = pi, if

∂y(t, p0)

∂pi
> 0 (19)

p(t)min = pi, p(t)
max = p

i
, if

∂y(t, p0)

∂pi
< 0 (20)

If the functions p(t)min, p(t)max have finite number of values,
then it is possible to find the exact interval solution by
using appropriate endpoints y(t) = y(t, pmin(t)), y(t) =
y(t, pmax(t)). Solutions y(t, pmin(t)), y(t, pmax(t)) can be
calculated by using any numerical method.
Unfortunately usually the function y = y(t, p) is not monotone
(with respect to the parameter p). Methods which can be
applied in these situations will be presented in the next
sections.

IV. HERMITE INTERPOLATION METHOD

Let us consider the following differential equation
dy
dt = p · cos(pt)
y(0) = 0
p ∈ [p, p]

(21)

Exact solution is equal to y = sin(pt) and we can use it
in verification of the results. Solution is not monotone with
respect to the parameter p. In this approach we are going
to solve the equation (21) for p = mid(p). After that it
is necessary to find partial derivative ∂y

∂p , which satisfies the
following differential equation

d
dt

(
∂y
∂p

)
= cos(pt)− ptsin(pt)

∂y(0)
∂p = 0

p ∈ [p, p]

(22)

Let’s find the solution of the equation (21) and equation (22)
for the mid point p(0) = mid(p). Using that solution and
appropriate derivative it is possible to create interpolation
polynomial.

y(t, p) ≈ yapprox(t, p(0), p) (23)

In order to increase the accuracy of the calculations it is
possible to use more solutions, which correspond to different
values p(0), ..., p(n).

y(t, p) ≈ yapprox(t, p(0), ..., p(n), p) (24)

Let’s introduce the following lists

Lp = {p(0), ..., p(n)} (25)

Ly = {y(t, p(0)), y(t, p(1)), ..., y(t, p(n))} (26)

L ∂y
∂pi

=

{
∂y(t, p(0))

∂pi
,
∂y(t, p(1))

∂pi
, ...,

∂y(t, p(n))

∂pi

}
(27)

In this approach it is necessary to assume some initial form
of the approximate solution

yapprox(t, p) = Φt(a1, ..., am, p) (28)

unknown parameters a1, ..., am can be calculated from the
following interpolation conditions

y(t, pi) = yapprox(t, p(0), ..., p(n), pi), (29)

∂y(t, pi)

∂p
=

∂yapprox(t, p(0), ..., p(n), pi)

∂p
(30)

Conditions (29,30) have to be applied for each timestep
separately. It is also possible to apply interpolation for the
variables t and p simultaneously. Now using classical opti-
mization methods (in this paper the gradient descent method
was applied) it is possible to find approximate values of upper
and lower bound of the solution

yapprox = min{yapprox(t, p(0), ..., p(n), p) : p ∈ p}, (31)

yapprox = max{yapprox(t, p(0), ..., p(n), p) : p ∈ p}. (32)



pmin
approx(t) = argmin{yapprox(t, p) : p ∈ p}, (33)

pmax
approx(t) = argmax{yapprox(t, p) : p ∈ p}. (34)

For p ∈ [1, 1.2] example solution is shown on the Fig. 7.
For wider intervals the solution contain all values between

Fig. 7. Interval solution of the equation 21 for p ∈ [1, 1.2].

[−1, 1] (compare Fig. 8). It is interesting to note that even for

Fig. 8. Interval solution of the equation (21) for p ∈ [1, 1.5].

narrow interval data after some time the interval solution of
the equation (21) is y = −1, y = 1. However, it is very hard
to use that kind of solution in the practical applications.
In presented calculations three solutions and their deriva-
tives were applied y(t, p(0)),∂y(t,p

(0))
∂p ,y(t, p(1)),∂y(t,p

(1))
∂p ,

y(t, p(2)), ∂y(t,p(2))
∂p were p(0) = mid(p), p(1) = p, p(2) = p.

Using point solutions it is possible to calculate reliable inner
estimation of the interval solution

yinner(t, p(0), ..., p(n)) = min{y(t, p(i)) : i = 1, ..., n} (35)

yinner(t, p(0), ..., p(n)) = max{y(t, p(i)) : i = 1, ..., n} (36)

Let’s calculate the combination of parameters pmin
new , p

max
new

which correspond to the maximum difference between the
interval solution (31, 32) and the inner solution

tmin = argmax
t∈[t1,t2]

{yapprox(t)− yinner(t)}, (37)

yapprox(tmin) = y(t, pmin
new), (38)

tmax = argmax
t∈[t1,t2]

{yapprox(t)− yinner(t)}, (39)

yapprox(tmax) = y(t, pmax
new ). (40)

Now, it is necessary to calculate appropriate values of the
function y (i.e. y(t, pmin

new), y(t, p
max
new )) and derivatives (i.e.

∂y(t,pmin
new)

∂p ,
∂y(t,pmin

new)
∂p ), then add them to the lists Lp, Ly, L ∂y

∂p
.

If the difference yapprox(t) − yinner(t) and yapprox(t) −
yinner(t) is sufficiently small, then we can stop calculations
and assume that

y(t) ≈ yapprox, y(t) ≈ yapprox(t) (41)

V. ADAPTIVE TAYLOR METHOD

The algorithm which we described in the last section is very
accurate even for large uncertainty, unfortunately interpolation
(29,30) is very complicated when the amount of uncertain
parameters is large. In order to simplify the method for
calculation of yapprox(t) in this section Taylor series will be
applied.

A. First order approximation

In the simplest case in order to create yapprox(t) first order
Taylor series can be applied. For all points in the list Lp =
{p(0), ..., p(n)} it is necessary to calculate appropriate values of
the lists Ly and L ∂y

∂pi

. Let’s create a new list LT1 which contain

first order Taylor approximation of the solution y(t, p(k))

T1(t, p
(k), p) = y(t, p(k)) +

∑
i

∂y(t, p(k))

∂pi
(pi − p

(k)
i ) (42)

LT1 = {T1(t, p
(0), p), ..., T1(t, p

(n), p)} (43)

Accuracy of the Taylor expansion depend on the distance
ρ(p, p(k)) = ∥p − p(k)∥. Because of that in order to estimate
the value of the function yapprox(t, p), it is good to apply
the closest Taylor expansion to the point p. So, in order to
calculate the value yapprox(t, p) it is necessary to calculate

kmin = argmin
k∈0,...,n

∥p− p(k)∥ (44)

and then

yapprox(p) = yapprox(t, p(kmin), p) (45)

It is also possible to calculate the value of the approximate
solution by using weighted average

yapprox(t, p) =

∑
i T1(t, p

(i), p)wi(p, p
(i))∑

i wi(p, p(i))
(46)

where
yapprox(t, p) =

1

∥p− p(i)∥α
(47)

Usually α = 2. Computational algorithm which produce upper
and lower bound is the same like in the section IV.

B. Second and higher order approximation

In second order approximation it is necessary to use list of
second order derivatives L ∂2y

∂pi∂pj

and also second order Taylor

expansions LT2 . It is also possible to use higher order Taylor
expansions in a similar way.



C. Numerical example - forced vibrations

Let us consider forced vibrations

d2y

dt2
+

k

m
y =

P

m
cos(ωt) (48)

where y(0) = 1, dy(0)
dt = 0, P=1, k ∈ [1, 2], m ∈ [1, 2],

ω = 2. Solutions yapprox and yapprox, which were calculated
by using only the mid point, are shown on the Fig. 9. In

Fig. 9. Interval solution of the equation (48) which use only mid point
solution and second order approximation.

order to increase accuracy it is possible to calculate upper
and lower bound yapprox and yapprox using most promising
combinations of parameters (pmin

new , p
max
new ). Then, it is possible

to calculate the interval solution once again. The results of the
calculations (for 3 point solutions) is shown on the Fig. 10.
In order to increase accuracy it is possible to calculate new

Fig. 10. Interval solution of the equation (48) which use three point solutions
and second order approximation.

combinations of parameters (pmin
new , p

max
new ), which reduce the

error. Interval solutions which use 5 point solutions is shown
on the Fig. 11.
Lets define the maximum error as a maximum difference be-

tween the approximate solution yapprox and the inner solution
yinner. Error has to be calculated separately for the upper
bound and lower bound.

emin = max
t

|yapprox(t)− yinner(t)| (49)

emax = max
t

|yapprox(t)− yinner(t)| (50)

Fig. 11. Interval solution of the equation (48) which use five point solutions
and second order approximation.

TABLE I
ESTIMATED ERROR OF THE SOLUTION

Number of solutions emin emax

3 4.64192 1.96693
5 0.04037 0.71053

Values of that error for differen number of solutions is shown
in the table below.

The difference between the true solution and the approxi-
mate solution (y− yapprox, y− yapprox) is much smaller. On
the foregoing pictures we see convergence of the method.

D. Numerical example - vibrations of beam

Let us consider a beam which is shown on the Fig. 12.
Partial differential equation of vibrations can be written in the

Fig. 12. Beam FEM model.

following form
−EJ ∂4y

∂x4 + q = ρA∂2y
∂t2

y(0, t) = 0, y(L, 0) = 0
∂2y(0,t)

∂x2 = 0, ∂2y(L,t)
∂x2 = 0

y(x, 0) = 0
q(x, t) = δ(x− L/2)P (H(t− t0)−H(t))

(51)

After FEM discretization [6] of the equation (51) we get the
following ordinary differential equation

Mÿ +Ky = Q (52)

where M is the mass matrix, K is he stiffness matrix, and
Q is the vector of forces. Now using numerical integration
it is possible to calculate the solution. In this example the



following interval data (5% uncertainty) were applied E ∈
[190 · 109, 210 · 109][Pa], J ∈ [7.92 · 10−6, 8.75 · 10−6][m4],
A ∈ [0.0095, 0.0105][m2], ρ ∈ [7480.3, 8267.7]

[
kg
m3

]
. Other

parameters are the following L = 10[m], P = 1000[N ],
dt = 0.001[s], t0 = 0.001[s].
In the first part of the algorithm it is necessary to find
partial derivatives of the solution with respect to the uncertain
parameters pi. In order to do that it is possible to use finite
difference.

∂y(t,x,p0)
∂pi

≈ y(t,x,...,p
(0)
i +∆p

(0)
i ,...)−y(t,x,...,p

(0)
i ,...)

∆p
(0)
i

(53)

All solutions y(t, x, ..., p(0)i +∆p
(0)
i , ...) and y(t, x, ..., p

(0)
i , ...)

should be added to the list Ly as well as all points p0, p(0)i +

∆p
(0)
i should be added to the list Lp. Interval solution is shown

in the Fig. 13. On the picture it is possible to see the mid point

Fig. 13. Interval solution of the equation (51).

solution as well as all solutions y(t, x, ..., p
(0)
i + ∆p

(0)
i , ...)

which are necessary to find the derivatives (53). In this case in
order to find yapprox(t, x, p) first order Taylor approximation
was applied.

VI. WEB APPLICATION

Examples which are presented in this paper
are available on-line on the following web page.
http://andrzej.pownuk.com/interval web applications.htm.
Web applications were implemented by using asp.net and
Silverlight. Example web application is shown on Fig. 14.

CONCLUSIONS

In this paper a new approximate method for calculating
solution of the interval differential equations [yapprox, yapprox]
was presented. The method allows as to calculate guaranteed
inner bound of the solution [yinner, yinner]. Using the dif-
ferences yapprox − yinner, yapprox − yinner it is possible to
estimate accuracy of the calculations and increase accuracy in
the next iteration.
According to the numerical results the interval solution is very
often a non-differentiable function. If the solution is monotone,
then the results of the calculations are exact.
The method allows us to calculate not only the interval so-
lution [yapprox, yapprox] but also combinations of parameters
pmin
approx(t), p

max
approx(t), which generate each bound.

yapprox = y(t, pmin
approx(t)), y

approx = y(t, pmax
approx(t)) (54)

Fig. 14. Web application for modeling of the vibrations of beams with the
interval parameters (Silverlight).

yinner = y(t, pmin
inner(t)), y

inner = y(t, pmax
inner(t)) (55)

This is very important in the applications of the interval
methods.
Presented method can be applied in the case of very large
uncertainty. Adaptive approximation (the method which was
described in this paper) can be applied to the solution of
ordinary as well as partial differential equations with the
interval parameters.
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