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Abstract: 
 

The problem of optimal design consists in finding the optimum parameters according to a 
prescribed optimality criterion. Existing optimization methods usually aren’t reliable or can’t 
use the nondifferentiable, not continuous objective functions or constraints. An interval global 
optimization method is: very stabile and robust and universally applicable. The interval 
algorithm guarantees that all stationary global solutions have been found. Unfortunately 
application of this algorithm is sometimes a very time consuming task. The best local 
optimization methods are the gradient methods. In this paper a hybrid gradient-interval 
global optimisation method is presented. This method has the best features of both methods 
i.e. fast local and reliable global convergence. In this paper this algorithm was applied to 
optimization of truss structures. Examples of optimization of truss structures with uncertain 
parameters was also presented. 
 
 
1. INTRODUCTION 
 

Algorithms for solving global minimization problems can be classified into heuristic 
methods that find the global minimum only with high probability, and methods that guarantee 
to find a global minimum with accuracy. An important class belonging to the former type are 
the stochastic methods. A number of techniques like simulated annealing and genetic 
algorithms use analogies to physics and biology to approach the global optimum. The most 
important class of methods of the second type are branch and bound methods [2]. They derive 
their origin from combinatorial optimization, where global optima are also wanted but the 
variables are discrete and take a few values only. Branch and bound methods guarantee to 
find a global minimum with a desired accuracy after a predictable (though often exponential) 
number of steps. The basic idea is that the configuration space is split recursively by 
branching into smaller and smaller parts. This is not done uniformly, instead some parts are 
preferred and others are eliminated. The details depend on bounding procedures. Lower 
bounds on the objective allow to eliminate large portions of the configuration space early in 
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the computation so that only a (usually small) part of the branching tree has to be generated 
and processed. The lower bounds may be obtained by using techniques of interval analysis 
[3], or other method. The interval global optimization method is: very stabile, robust and 
universally applicable. The interval algorithm guarantees that all stationary global solutions 
have been found. Unfortunately this algorithm is sometimes very time consuming [4]. 

Local optimization methods are usually much faster. In this paper an optimization method 
based on the sensitivity analysis was applied. 

A hybrid algorithm is constructed in the following way. First local minimum is found 
using a local optimization method, then we check if this minimum is global using the 
algorithm of interval global optimization. 
 
2. A LOCAL OPTIMIZATION METHOD 
 

The mathematical modelling of structural design optimization problem is as follows: 
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where RR: n →J  is the objective function, n is the number of design variables ix , inm  is 
the number of inequality constraints, eqm  is a number of equality conditions. 
The objective function J is equal to the weight of the truss 
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The inequality constraints are defined in the following way: 
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where 0σ  is the allowable stress, iσ  is the stress in the i-th bar, iL  is the length of the i-th bar, 
E  is the Young’s modulus, iJ  is the moment of inertia of the cross-section of the i-th bar, γ  
is the specific gravity of the material. The equality constraints are given in the form of the 
equilibrium equations: 
 ( ) QqxK =  (4) 
where K is the global stiffness matrix, q is the displacement vector, Q is the force vector. 
The procedure presented here is based on the first order gradient-based method (e.g. [1]), but 
can be replaced by any local optimization algorithm. 
The steps of presented procedure are the following: 

1. Initial configuration 00 xx == ,i . 
2. Evaluate ( )iJ x  and ( )i

jg x  for j=1,…, inm . 
3. Identify violated or active constraints. 
4. Calculate the gradient using the sensitivity analysis methods. 
5. Determine the next search direction is . 
6. Perform one-dimensional search to find α . 
7. Set iii sxx ⋅+=+ α1 . 
8. Check for convergence to the optimum. If convergence criteria are satisfied, exit, 

otherwise set 1+= ii , and return to step 2. 



3. THE INTERVAL GLOBAL OPTIMIZATION 
 
The interval global optimization method is based on the properties of interval arithmetic (3). 
If the following inequality holds 

 [ ]( ) [ ]( )−+ < 21 xx f̂f̂  (5) 

where [ ]( ) [ ]( )[ ] [ ]( )xxx f̂hullf̂,f̂   =+− , [ ] [ ] n, IR21 ∈xx , RR: n →f , then the global minimum 
is not in the interval [ ]2x  and can be omitted in future calculations. Because 

[ ]( ) [ ]( )−+ < 21 xx f̂f̂  then from the fundamental property of interval arithmetic, it follows that 
 [ ] [ ] ( ) ( )xxxxxx IKIK ff <∈∀∈∀  21 , (6) 
hence the global minimum of the function f is not in interval [ ]2x  and [ ]2x  can be omitted in 
future calculations. IR is a set of all closed intervals [3], RIR: n →f̂  is the natural interval 
extension of the function f [3]. 
Let [ ] nIR∈x  be an initial interval. The basic algorithm is as follows [2]: 

Step 0 Set [ ] [ ]xy =  and [ ]( )−= xf̂y  . Initiate the list L=(( [ ]y ,y)) and the cut-off level 
[ ]( )+= xf̂z . 

Step 1 Choose a coordinate direction { }n,...,,k 21∈ . 
Step 2 Bisect y in direction k: [ ] [ ] [ ]21 vvy ∪= . 
Step 3 Calculate [ ]( )1vf̂  and [ ]( )2vf̂  and set [ ]( )−= ii f̂ vv  for i=1,2 and 

[ ]( ) [ ]( ){ }++= 21     ,min vv f̂,f̂zz . 
Step 4 Remove ( [ ]y , y) from the list L. 
Step 5 Cutoff test: discard the pair [ ]( )ii , vv  if z,vi  (where i=1, 2). 
Step 6 Add any remaining pair(s) to the list L. If the list becomes empty then STOP. 
Step 7 Denote the pair with the smallest second element by [ ]( )y,y . 
Step 8 If the width of [ ]( )yf̂  is less than ε, then print [ ]( )yf̂  and [ ]y , STOP. 
Step 9 Go to step 1. 

 
4. A NUMERICAL EXAMPLE 
 

Let us consider the truss structure which is shown in Fig 1. 
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Fig 1 



In calculation, we assume that L=H=1 [m], 0σ =190 [MPa], P=10 [kN], [ ] [ ] [m]  2 0,xw = , 
[ ] [ ] [m]  1  0,yw = . The numerical results are shown in the table 1. 
 
Table 1 

Local optimization Interval global optimization  

[ ]kN  P  y  [ m ] 
1A  [ 2m ] 2A  [ 2m ] y  [ m ] 

1A  [ 2m ] 2A  [ 2m ] 
1 0.4995 5.88 610−⋅  5.88 610−⋅  [0.497,0.505] 5.88 610−⋅  5.88 610−⋅  

 
The results were calculated in 12 iterations of the interval algorithm with monotonicity 

test [2]. From table 1 and properties of the interval global optimization method follow that 
presented problem has only one global minimum. 
 
5. CONCLUSIONS 
 

In this paper a new method of global optimization of engineering structures was 
presented. This method is much more effective than pure interval global optimization method 
and can also prove existence and unique of the global minimum in the nonlinear global 
optimization problems. More complicated examples of applications will be presented on the 
conference. 
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