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Abstract: The Finite Element Method (FEM) is one of the most popular approach to descrl:J=~"
today. In order to apply this method efficiently, it is necessary to know the exact val ;>00;;

case of uncertain shapes, the FEM method leads to a parameter dependent system of ~'.:::"">r-l:;::'

interval set parameters. In this paper the solutions for such equation will be presented. L =_.
of topological derivative and monotonicity. Numerical examples will be presented.
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1 Engineering problems with the un-
certain shape

Almost all engineering problems require a very pre-
cise information about the geometry (eg. height,
thickness, curvature, coordinate of the characteristic
points of the structure etc.) of the problem. Unfor-
tunately, due to many reasons (unavoidable inaccu-
racy in the construction process, bad materials, etc.)
the real dimension of the engineering structure are not
know exactly [5, 6, 12].

Civil engineering projects are usually very
unique. Because of that it is very hard to get reliable
probabilistic characteristics of the structures. One
of the simplest methods for modeling uncertainty is
based on the intervals. If n denotes the domain of the
structure, then. due to uncertainty, we can assume that

(1)

where n.n denotes the extreme value of the shapes.
If u = u{x. n, is a characteristic of the structure, e.g.
displacement. then in the case of the uncertainty, in-
stead of one number we have the whole interval

:!! I.U I: = {u{x,!1):!1 E [.Q,D]} (2)

ISSN: "iI::>..rL... =

In this paper, some
[1&(x), u( x) J will be presesaea,
tain parameters were con£::l:::::::"'=

2.1 Center of gravity

x coordinate of the center ~~ ....,....,..~.
of a set dependent functi

2.2 Moment of ine .
Different kinds of mom
by using integrals, and th _

fy(!1) = J x2d/-L, fo -- =
n

310



RECENT ADVANCES in APPLIED MA CS

WllilI::Cn of PDE or integral equations
problems (BVP) can be described as

....,.'·--;,"'1 differential equations

for xED
for x E oD (5)

= fa(x) is a PDE, which is defined
~r:;;:::; .nt(D), and B(x)u(x) = fb(X) is a

- ed on the boundary oD. The Solu-
set dependent function u = u(x, D)

IIIIIII"L.;.'I;';" _~ solution of plate equation

x) = q~), for xED
= w*(x), for x E oD (6)

.c::=~ function w = w(x, D) (w is a
t-of-plane displacement, p is a dis-

_ •••••.,=~me bendinglflexural rigidity, w*(x)
••• ..::::5i;;::!a<:ementat the boundary of the plate

definition of topological

open, bounded domain, D c Rn

",--",~ .•mooth boundary oD. If the domain
_--- "'C_ introducing a small hole Be of ra-
~-=::I3:=:r.nry point xED, we have new do-

- B=:, whose boundary is denoted by
=' Topological derivative of certain

'(D) can be defined as the follow-

(7)

gi en function, which is positive

Jim f(c) = O.
=:~+

(8)

e can use the following notation

dW
!J]-(x) = dD(x) (9)

_E:!cri"c method for calculating
"~Cll derivative

define topological derivative for
"'-"~"V_ perturbations. In this case, Dc is

the arbitrary et (i.e. not necessarily Dc = D - Be).
However Do ~ D, when e ~ O.

D ( ) = li W(Do) - W(D) = (10)
T x 0!;6 f(e)

'Iji(r1e)-'lji(r1) ( d'lji)
I· 0 dO D(O)( )= O~ f(o)-f(O) = df = T x (11)

o dO 0=0
In some cases, the formula (11) gives the same results
for different parameterizations (c).
Let us consider a triangle ABC, where A=(O,O),
B=(1,0), C=(1+c,1). and a function Wl(c) =
Wl(De) = IDoI2, where IDel = (1 + c)/2 is the area
of the triangle, f(c) = IDel - 0.5.

(

d'ljil) (l+e)DC - de: - 2 - 10T- 11. - 1 - .
de e:=0 2 e:=0

(12)

In this case, topological derivative can be calculated
for all parameterisations

lim WI (Dc) - WI (D) = lim IDel2 - 0.52
=

c->O+ f(c) e--O+ IDe:I- 0.5
(13)
(14)lim IDel + 0.5 = IDol + 0.5 = 1e--O+

Let us consider the function W2(De) = uc = c, for
the parameterisation which was given above

(
d'lji2) (1)Dc - de - - 2

T- 11. - T -
de: e=O "2 e=O

(15)

Let us consider different parameterisation of the shape
of the triangle C=(1 + ')',1). In this case, W2(D"I) =
YC = 1

(

d'lji2) (0)D"I - d"l - - 0
T- ---;if - I -

d"l "1=0 2 0=0

(16)

Then 2 = Dr i:- Dj, = 0 i.e. the result depends on
the parameterisation.
In the literature, usually the concept of parameter in-
dependent topological derivative is used [3].

5 Basic formulas for calculating
topological derivatives

5.1 Function in the form 1/;(0,) = J L(x)dx
r1

Theorem 1 Let us consider the integral in the form

w(Dc) = J L(x)dx

{}"

(17)
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where L is a continuous function and f2 c Rm is a
sufficiently regular set and f2e:=f2 - Bs: The topolog-
ical derivative of the function . in the point y E f2 is
equal to [4J

d'if;(f2) d J
df2(y) = df2(y) L(x)dx= L(y)

fI

(18)

Example

(19)

5.2 Functions of in the form

'lj;(D) = F (l L(X)dX)

Theorem 2 Let us consider the integral in the form

,pin) ~ F ([ L(x)dx ) (20)

where L : Rm --+ R is a continuous function, F :
R --+ R is differentiable function and f2 c H'" is a
sufficiently regular set and ne:=n - Be:. The topolog-
ical derivative of the function 'if; in the point yEn is
equal to

~~\~i~F ([ L(X)dX) . L(y) (21)

This is a consequence of the chain rule.
Example

It is important to distinguish between general param-
eterization ne and ne:=n - Bs,

Theorem 3 Let us consider the integral in the form

'if;(ne) = J L(x, O)dx (23)

fie

where L is a continuous function, and 0. c Rm is a
sufficiently regular set. For the general parameteriza-
tion e topological derivative of the function 'if;

:0 J Ldx = J ~~dx + J Innuls
fie fI ofl

(24)

ISSN: 1790-2769

where v = ~~and r = r(x,O) is ~-Il"Jlca.
scription of the boundary an (x E u.- ~""_"'III

normal vector to the boundary.

This is Reynolds transport theorem _

Theorem 4 Let

'if;(ne:) = J Liix,«

fie

d'if; J oL(x,O)

dn(y) = o~el dx-~
fI oe:

Theorem 4.
derivative.

Theorem 5 Let

'if; = 'if;(De:) = J L(x. n,
fie

6 Center of gravity

6.1 Topological derivative

The center of gravity (z-th coordinate
be calculated in the following wa

J Xidx

xf (0.) = fIJ dx

fI

The topological derivative can be cal~=:':"'''1III
ing quotient rule

dxC
__ 1_

dn(x)

The sign of the topological deri
same like the sign of the difference

Xi J dx - J x.dx.
fI fI

ISBN: 978-·unn..=o-:::c.__
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••.•••••• JU- mplicit topological derivative

nt method lead to the following pa-
.Ir·~ea:lent system of equations [10].

K(rl)u = Q(rl)

- the local stiffness matrix, Q(rl) is the
. the displacement vector. using, the

. n theorem, it is possible to calculate
•• ..,~~ derivative of the vector u.

~ = dQ(rl) _ dK(rl). (r.)
) drl(x) drl(x) u H (33)

•••• iIIIorIlP:Il displacements in 2D elas-
problem with uncertain

'=:::::S!f' the rectangular FEM element [10].
trix can be defined in the following

the integral (34) can be calculated by
--.5i--.-;,r" Transport Theorem.

~} =
- 3T DB)dV + J BT DBvndV (35)

an

--.:.::can be also calculated directly, if the
.---....=,,,,,,,=ion for K is known. It is possible to
t-·~Ie;!:i:::=::eri·cal differentiation e.g.

T K(() + b,,()) - K(()) (36)
- ~ b,,()

,,-. that () is a Y coordinate of the node 3.
nstant, then ~~ = O. Matrix B is de-

_ derivatives of the shape functions ~.
"'e:::=;~iITelement the first shape function has

orm

(
Y-Yl)

1- Y2 - Yl

x - Xl ) ( Y - Yl )
- - X2 - Xl 1- Y2 + ()- Yl

(32)

(34)

(37)

(38)

(39)

In order to calculate the derivative, it is necessary to

calculate d~ (~ ), ~ 1rle I· Topological derivatives
can be calculated as

(40)

In a similar way, it is possible to calculate the topo-
logical derivative of all elements of stiffness matrix .
Above described topological derivative can be used to
the calculations of extreme values of the set dependent
functions and in the modeling of uncertainty. Let us
consider the 2D plane stress FEM model from the Fig.
1 where P=IOOO[N], Lx=Ly=l, E = 2· 1012 [~],
v = 0.2, h=O.l [m] (thickness). Let us consider per-

4

1

p 3 p

Figure 1: 2D FEM problem

turbation of the region in the direction of Y axis. Let
us consider Y displacement of the node 3 in the Y di-

rection (u~3)).The topological derivative d~W can be
calculated in the following way

(3) du~3)
duy de

drl = dlnel. ----riB
(41)

d (3)
The derivative ~ can be calculated form the im-
plicit function theorem.

Kdu = dQ _ dKuao df) df)
(42)

After calculations, we will get

d (3)
~ = -9.9194-.10-9 (43)
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Then topological derivative

(3) du;})
duy = ~ = -991947· 10-9 (44)dn dlnl .

dO

is negative, because of that

nmin = TI, nmax = n (45)

then

Jl.P) = uP) (nmin), u~3) = u~3)(nmaX). (46)

For 6.0 = O.l[m] extreme values of the displace-
ments are the following.

U~3) E [-1.0861.10-8, -8.87705· 1O-9][m] (47)

The results confirm the intuition that if the region is
higher (y coordinate grows), then the absolution value
of the displacement in the y direction grows. Because
the sign of that displacement is negative, then the
function actually is decreasing and the topological
derivative is negative.

Now let us consider a model which is shown
in the Fig. 2. In calculations, the following
numerical data is considered, Young's modulus
E E [1.98· lOll, 2.02 . lOll] [Pal, Poisson
ration v E [0.198,0.202] the uncertain load
P E [-1010, -990] [N], and uncertain x coordinates
of the supports 6.x = 0.01 [m] (Xl E [-6.x, 6. x],
X3 E [2L - 6.x, 2L + 6.xj), L=lO [m], H = L = 1
[m], thickness w=O.Ol [m]. In calculations 6 rectan-
gular FEM elements were applied. Interval von Mises

Figure 2: FEM model in ANSYS

stress are shown on the Fig. 3. Maximum von Mises
stress is shown on the Fig. 4. Calculation was done by
using special gradient free optimization method [11].
The appropriate software can be downloaded from

ISSN: 1790-2769

Figure 3: Interval von

Figure 4: Maximum von MJ~.s::~

the authors web page http://and:rz~:::JII.
On the same web page, it is possi
applications which automatically g
for the calculations. The program
in C++ language and can be run
Linux.

9 Trusswith uncertain gec:il-1IJIIl

Let us consider 11 bar truss [10].
on the Fig. 5 with the uncertain Y
E E [1.98· 1011,2.02 . lOll] [Pal- =::=-_
P E [-15150, -14850] [N], and m:x:::::=
dinates of the nodes 1 and 3 6.x =
[-6.x, 6.x], X3 E [2L - 6.x, 2L +
H = 5 [m], area of cross-section _~-
Interval displacements are shown in p'"-- 'T-~

ISBN: 978- -
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Figure 5: 11 bar truss

'al displacement of the truss with uncer-

er bound [m]

-1.239865e-002

Upper bound [m]
-_ 83822e-005 2.886680e-005
- -26831e-002 -1.463698e-002
-- _16225e-005 7.2l4392e-005
- _96921e-002

~~z::::tl~ concept of topological derivative can
the efficient and large scale HPC com-
equation (33) can be used in the frame-
FVM or BEM method. The algorithm_£~_of uncertainty is the same as in the case

] and functional parameters [2]. The
• •••.••• ..-" >t" can be applied to the modeling a

_ of problems in computational science.
~the theory which was presented in this

-_....",.. .••1 interval FEM program, which will be
uncertainty of problems with interval,
al and set interval parameters will be

will be a topic of future research. A
FEM program which is uses interval
be downloaded from the the authors

:l/andrzej.pownuk.com). Several work-
~or::;!es hich are related to the Interval Finite

o presented on that web page.

~~~ A_ Numerical solutions of fuzzy partial
'::==:::::j;-al equation and its application in com-
_::Z::::c:::!lmechanics,. Fuzzy Partial Differential
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and V. Korotkikh, eds., Studies in
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