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ABSTRACT 
 
This paper presents the initial efforts by the authors to introduce uncertainty in the stress 
analysis of reinforced concrete flexural members. A singly reinforced concrete beam 
subjected to an interval load is taken up for analysis. Using extension principle, the internal 
moment of resistance of the beam is expressed as a function of interval values of stresses in 
concrete and steel. The stress distribution model for the cross section of the beam is modified 
for this purpose. The internal moment of resistance is then equated to the external bending 
moment due to interval loads acting on the beam. The stresses in concrete and steel are 
obtained as interval values. The sensitivity of stresses in steel and concrete to corresponding 
variation of interval values of load about its mean values is explored.  
 
Keywords: interval stresses, stress distribution, sensitivity analysis, search-based algorithm 
 
 
 
INTRODUCTION 

Analysis of rectangular beams of reinforced concrete is based on nonlinear and/or 
discontinuous stress-strain relationships and such analyses are difficult to perform. Provided 
the nature of loading, the beam dimensions, the materials used and the quantity of 
reinforcement are known, the theory of reinforced concrete permits the analysis of stresses, 
strains, deflections, crack spacing and width and also the collapse load. Further, the aim of 
analyzing the beam is to locate the neutral axis depth, find out the stresses in compression 
concrete and tensile reinforcement and also compute the moment of resistance. The aim of 
the designer of reinforced concrete beams is to predict the entire spectrum of behavior in 
mathematical terms, identify the parameters which influence this behavior, and obtain the 
cracking, deflection and collapse limit loads. There are usually innumerable answers to a 
design problem. Thus the design is followed by analysis and a final selection is obtained by a 
process of iteration. Thus the design process becomes clear only when the process of analysis 
is learnt thoroughly. 
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In the traditional (deterministic) methods of analysis, all the parameters of the system are 
taken to be precisely known. In practice, however, there is always some degree of uncertainty 
associated with the actual values for structural parameters. As a consequence of this, the 
structural system will always exhibit some degree of uncertainty. A reliable approach to 
handle uncertainty in a structural system is the use of interval algebra. In this approach, 
uncertainties in structural parameters will be introduced as interval values i.e., the values are 

known to lie between two limits, but the exact values are unknown.  Thus, the problem is of 
determining conservative intervals for the structural response. Though interval arithmetic was 
introduced by Moore [1], the application of interval concepts to structural analysis is more 
recent. Modeling with intervals provides a link between design and analysis where uncertainty 
may be represented by bounded sets of parameters. Interval computation has become a 
significant computing tool with the software packages developed in the past decade.  In the 
present work, interval algebra is used to predict the stress distribution in a reinforced concrete 
beam subjected to an interval moment.  

LITERATURE SURVEY 
 
In the literature there are several methods for solution of equations with interval parameters. 
In the year 1966, Moore [1] discussed the problem of solution of system of linear interval 
equations. There are many methods of solution of such equation. Many of them are discussed 
in the book [2] by Neumaier. Neumaier and Pownuk [3] explored properties of positive 
definite interval matrices. Their algorithm works even for very large uncertainty in 
parameters. In their work Köylüoglu, Cakmak, Nielsen [4] applied the concept of interval 
matrix to solution of FEM equations with uncertain parameters. System of linear interval 
equation with dependent parameters and symmetric matrix was discussed by Jansson [5]. 
Muhanna and Mullen [6] handled uncertainty in mechanics problems on using an interval-
based approach. Muhanna’s algorithm is modified by Rama Rao [7] to study the cumulative 
effect of multiple uncertainties on the structural response. 
 
Skalna, Rama Rao and Pownuk [8] investigated the solution of systems of fuzzy equations in 
structural mechanics. Ben-Haim and Elishakoff [9] introduced ellipsoid uncertainty. Akpan   
et. al [10] used response surface method in order to approximate fuzzy solution. Vertex 
solution methodology that was based on α-cut representation was used for the fuzzy analysis. 
McWilliam [11] described several method of solution of interval equations. Rao and Chen 
[12] developed a new search-based algorithm to solve a system of linear interval equations to 
account for uncertainties in engineering problems. The algorithm performs search operations 
with an accelerated step size in order to locate the optimal setting of the hull of the solution. 
Several models were proposed to describe the stress distribution in the cross section of a 
concrete beam subjected to pure flexure. Initially, the parabolic model was proposed by 
Hognestad [13] in 1951. This was followed by an exponential model proposed by Smith and 
Young [14] and Desai and Krishnan model [15]. These models are applicable to concretes 
with strength below 40 MPa. The Indian standard code of practice for plain and reinforced 
concrete IS 456-2000 [16] allows the assumption of any suitable relationship between the 
compressive stress distribution in concrete and the strain in concrete i.e. rectangle, trapezoid, 
parabola or any other shape which results in prediction of strength in substantial agreement 
with the results of test. The stress distribution model suggested by the Indian code IS 456-
2000 is followed in the present study (Fig.1)  
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STRESS ANALYSIS OF A SINGLY REINFORCED CONCRETE SECTION  
 
Stress distribution due to a crisp moment 
A singly reinforced concrete section shown in Fig.1 with is taken up for analysis of stresses 
and strains in concrete and steel. The beam has a width of b and an effective depth of d. The 
beam is subjected to a maximum external moment M. Strain-distribution is linear and εcc is 
the strain in concrete at the extreme compression fiber and εs is the strain in steel. Let x be the 
neutral axis depth from the extreme compression fiber. The aim of analyzing the beam is to 
locate this neutral axis depth, find out the stresses in compression concrete and the tensile 
reinforcement and also compute the moment of resistance. The stress-distribution is concrete 
is parabolic and concrete in tension is neglected. The strain εcy at any level y below the neutral 
axis (y≤ x) is   

cy cc
yε = ε
x

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (1) 

The corresponding stress fcy is  
2

cy cy
cy co

co co

ε ε
f =f 2 -
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Tensile stress in steel  
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If there are no external loads, the equation of longitudinal equilibrium, s cN N=  leads to        
the quadratic equation 

[ ] 2
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Depth of resultant compressive force from the neutral axis y  is given by 
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Internal resisting moment RM  is given by 

(R c c )M N z N y d x= × = × + −  (8) 
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For equilibrium the external moment M is equated to the internal moment of resistance MR as 

M ≤ MR (9)

The neutral axis depth x can determined by solving Eq. (6) only when εcc is known. Thus a 
trial and error procedure is adopted where in εcc is assumed and the corresponding values of 
Nc , y  and internal resisting moment MR are obtained using Eq. (10), Eq. (7) and Eq. (8) such 
that Eq. (9) is satisfied. 

Stress in steel 0.87s s s s cc y
d xf E E

x
ε ε−⎛ ⎞= = ≤⎜ ⎟

⎝ ⎠
f  (11) 

Total tensile force in steel reinforcement = s s sN A f=  (12) 
 
Stress distribution due to an uncertain moment 
Consider the case of a singly reinforced concrete beam subjected to an uncertain interval 
moment ,⎡= ⎣ ⎤⎦M MM  . The uncertainty in external moment arises out of uncertainty of loads 
acting on the beam. Correspondingly the resulting stresses and strains in concrete and steel are 
also uncertain and are modeled using interval numbers. Using extension principle [17] all the 
equations developed in the previous section can be extended and made applicable to the 
interval case. The objective of the present study is to determine distribution of stresses and 
strain across the cross section of the beam.  Two new approaches have been proposed for this 
purpose: a search based algorithm and a procedure based on Pownuk’s sensitivity analysis 
[18]. These methods are outlined as follows: 
 
SEARCH-BASED ALGORITHM (SBA) 
 
A search based algorithm (SBA) is developed to perform search operations with an 
accelerated step size in order to compute the optimal setting for the interval value of strain in 
concrete is [ ,cc ]ε εε  = . The algorithm is outlined below: 
 
Algorithm-1 

a) The mid-value M of the given interval moment M is computed as 
2
+

=
M MM  

b) Various values ofεcc are assumed and the neutral axis depth x and the corresponding 
values of Nc, y  and MR are determined by using a trial and error procedure outlined in 
the previous section. 

c) The interval strain in concrete ccε is initially approximated as the point 
interval[ ],cc ccε ε . 

d) The lower and upper bounds of ccε  are obtained as 

[ ]1 2,cc cc ccd dε λ ε ε λ ε− +ε  = dεwhere and dε  are the step sizes in strain to 

obtain the lower and upper bounds, 1λ and 2λ  being the corresponding multipliers. 
Initially 1λ and 2λ  are taken as unity. 

e) While both 1λ , 2λ  are non-zero, dε and dε are incremented and is computed. The 
procedure is continued iteratively till the interval form of Eq.(9) i.e.  is 
satisfied. The computations performed are outlined below: 

ccε
≤ RM M

 141



Proceedings of International Conference on Recent Developments in Structural Engineering (RDSE-2007), 
 Manipal Institute of Technology, Manipal-576104, India. 
 

1) The interval values of x , y ,z ,  and the interval internal resisting moment 

= 

cN

RM ,R RM M⎡⎣ ⎤⎦  are computed. If is a very small number η

2) 1λ is set to zero if  ηR

R

M M
M

−
≤  (13) 

3) 2λ  is set to zero if ηR

R

M M
M

−
≤  (14) 

4) The search is discontinued when 1λ = 2λ =0. 
 
SENSITIVITY ANALYSIS METHOD 
Extreme values of ccε  and x. 
 
Unknown variables ccε  and x  can be found from the system of equation (8) and equilibrium 
equation s cN N= . Lets introduce a new notation 

1 1 1

2 2 1

( , , ,..., ) ( ) 0
( , , ,..., ) 0

cc m R c

cc m s c

F F x p p M N y d x
F F x p p N N

ε
ε

= = − ⋅ +⎧
⎨ = = − =⎩

− =
 (15) 

where 1p M= , 2 cop f= , 3 Sp A= , 4 cop ε= , 5 Sp E= , 6p b= , 7p d= . 

Because the problem is relatively simple and the intervals ,i ip p− +⎡ ⎤⎣ ⎦  are usually narrow, then 
it is possible to solve the problem using sensitivity analysis method [18]. 
Let calculate sensitivity of the solution with respect to the parameter ip . 
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In matrix form 
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Algorithm-2 

1) Calculate mid point of the intervals 0 2
i i

i

p p
p

+
= . 

2) Solve the system of equation (15) and calculate 0ccε , 0x . 

3) Calculate sensitivity of the solution cc

ip
ε∂

∂
, 

i

x
p

∂
∂

 from the system of equation (18). 

4) If 0cc

ip
ε∂

≥
∂

 then min, cc
i ip pε = , max, cc

i ip pε = , if 0cc

ip
ε∂

<
∂

 then min, cc
i ip pε = , max, cc

i ip pε = . 

 142



Proceedings of International Conference on Recent Developments in Structural Engineering (RDSE-2007), 
 Manipal Institute of Technology, Manipal-576104, India. 
 

5) If 0
i

x
p

∂
≥

∂
 then min,x

i ip p= , max,x
i ip p= , if 0

i

x
p

∂
<

∂
 then min,x

i ip p= , max,x
i ip p= . 

6) Extreme values of ccε , x  can be calculated as a solution of the following system of 
equations. 

7) Verification of the results. If the derivatives have the same sign at the endpoints 
min, max,min, max,, , ,cc ccx x

i i i ip p p pε ε  and in the midpoint then the solution is very reliable. 
Interval stress in extreme concrete fiber 
Sensitivity of stress in extreme concrete fiber ccf  can be calculated in the following way 

cc cc cc cc
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In the midpoint sensitivity is equal to  
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Extreme values of stress in extreme concrete fiber calculated form the formulas (20) and (21).  

Interval stress in steel 
Sensitivity of stress in steel sf  can be calculated in the following way 
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Sensitivity at the mid point is computed as 
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COMBINATORIAL SOLUTION 
 
Combinatorial solution is obtained by considering the upper and lower bounds of the external 
interval moment and computing the corresponding deterministic values of εcc , x, y , Nc and 
MR are determined. The lower and upper values taken by these quantities are utilized to obtain 
the corresponding interval values of ,x y , , and . z cN RM
 
 
 
EXAMPLE PROBLEM 
 
A singly reinforced beam with rectangular cross section is taken up to illustrate the validity of 
the above methods. The beam has the dimensions b= 300 mm and D = 550 mm and effective 
depth d = 500 mm. The beam is reinforced with 6 numbers of Tor50 bars of 25 mm diameter 
( ).  The interval bending moment acting on the beam is26 491 SA = × mm [ ]96,104  M kNm∈ . 
Allowable compressive stress in concrete is 213.4 cof N mm= and allowable strain in 
concrete 0.002coε = . Young’s modulus of steel 52.0 10  SE N= × 2mm .The stress-strain curve 
for concrete as detailed IS 456-1978 is adopted (Fig.1).  
 
RESULTS AND DISCUSSION 

Using equation (17)  cc

M
ε∂

∂
 and x

M
∂

∂
are computed as -12 15.296 10cc

M N mm
ε∂

= ×
∂ ⋅

and  

-8 18.181 10x
M N
∂

= ×
∂

. Similarly the values of  ccf
M
∂

∂
 and sfM

∂
∂

 are computed using 

equation (21) and equation (25) as -7
3

18.429 10sfM mm
∂

= ×
∂

and -8
3

15.354 10ccf
M mm
∂

= ×
∂

. 

For all parameters, it is observed that the sensitivities at the endpoints have the same sign as 
in the midpoint, thus establishing the reliability of the solution. 
 
Interval values of neutral axis depth x, strain ccε  and stress ccf in extreme compression fiber 
of concrete and stress in steel sf computed for an external interval moment M= [96,104] kNm 
using search-based algorithm (SBA) and sensitivity analysis (SA) approach. Table.1 presents 
the results obtained using these two approaches along with combinatorial solution Relative 
difference is computed for results obtained using SBA and SA with results obtained using 
combinatorial approach. It is observed that the relative difference is very small. Thus the 
methods agree very well with the combinatorial solution. 
 
The interval values of bending moment at various levels of uncertainty (membership value) 
are shown in Fig.2.  For instance, an interval bending moment of [96,104] kNm corresponds 
to a membership value of 0.6. A membership value of 1.0 corresponds to a point interval 
bending moment of [100,100] kNm. Interval values of bending moment can be extracted at 
any desired level of uncertainty for use in the stress analysis. The corresponding interval 
values of neutral axis depth, strain and stress in concrete and stress in steel reinforcement are 
computed at various levels of uncertainty and membership functions are plotted. 
 
Fig. 3 shows the plots of membership function for the depth of neutral axis obtained using the 
approaches. The membership function for the extreme fiber stress in concrete is presented in 
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Fig. 4. Fig.5 depicts the membership function for the stress in steel reinforcement. 
Membership function for the strain in extreme fiber of concrete is shown in Fig.6. It is 
observed that all these membership functions are triangular with linear variation of the 
response about the corresponding mean value. The plots of membership functions obtained 
using combinatorial approach and sensitivity analysis coincide and these plots agree well with 
the membership functions plotted using search-based approach. Percentage variations of 
interval stresses in concrete (  ) and steel ( ) and external interval bending moment M  are 
computed about their respective mean values. Fig. 7 shows the plot of percentage variation of 

 and as a function of the percentage variation of M . It is observed from Fig. 7 that is 
more sensitive to variation in bending moment in comparison to  

ccf sf

sf ccf sf

ccf .
 
CONCLUSIONS 
 
In the present paper, analysis of stresses in the cross section of a singly reinforced beam 
subjected to an interval external bending moment is handled by three approaches viz. a search 
based algorithm and sensitivity analysis and combinatorial approach. It is observed that the 
results obtained are in excellent agreement. These approaches allow the designer to have a 
detailed knowledge about the effect of uncertainty on the stress distribution of the beam. The 
membership functions for neutral axis depth and stresses in concrete and steel are plotted and 
are found to be triangular. It is observed that stress in steel is more sensitive to the given 
variation of bending moment when compared to the corresponding stress in concrete.  
 
Interval stress and strain can be also calculated using sensitivity analysis. Because the sign of 
the derivatives in the mid point and in the endpoints is the same then the solution should be 
exact. More accurate monotonicity test is based on second and higher order derivatives [18]. 
Results with guaranteed accuracy can be calculated using interval global optimization [19,20]. 
Extended version of this paper will be published on the web page of the Department of 
Mathematical Science at the University of Texas at El Paso 
(http://www.math.utep.edu/preprints/). 
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Table. 1 Comparison of  results obtained using the three approaches for M = [96,104]kNm 

 εcc×10-4 fcc (N/mm2) x(mm) fs(N/mm2) 
 Lower Upper Lower Upper Lower Upper Lower Upper 
Mid-point 
Solution 4.9102 5.772 270.617 83.238 

Combinatorial 4.699 5.123 5.557 5.986 270.291 270.946 79.8701 86.6187 
Search based 
approach 4.770 5.046 5.586 5.956 269.473 271.759 80.123 86.350 

% difference 1.51 1.50 0.52 0.50 0.30 0.30 0.32 0.31 
Sensitivity 
Analysis 4.69909 5.12276 5.55705 5.98537 270.291 270.946 79.8712 86.6146 

% difference 0.002 -0.005 0.001 -0.011 0.000 0.000 0.001 -0.005 
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Fig.3 Membership function for depth of neutral axis
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 Fig. 2 Membership function for bending moment
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Fig.4 Membership function for stress in concrete
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Fig. 5 Membership function for stress in steel
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Fig.6 Membership function for strain in concrete
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Fig.7 Sensitivity of stresses in concrete and steel
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