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Abstract

Calculation of the solution of fuzzy partial differenteduations is in general
very difficult. We can find the exact solution only innms® special cases. Fortu-
nately, in most of engineering applications relatiortsvben the solutions and un-
certain parameters are monotone (we can assumevtiet,the uncertainty of the
parameters is sufficiently small). In this case, thecegalution can be calculated
using only endpoints of given intervals. In order to imprtwe efficiency of cal-
culation we can apply sensitivity analysis.

In this paper, a very efficient algorithm of solutionswaresented. This algo-
rithm is based on finite element method (or any othenarical method of solu-
tion PDE like for example FEM or BEM) and sensitivitgadysis. Using this
method we can solve engineering problems with thousdedsee of freedom.
Fuzzy partial differential equations can be applied for niregleof mechanical
system (structures) with uncertain parameters.

To construct the fuzzy membership function random saisbe applied. This
theory contains fuzzy sets and probability theoryspscial cases. Using algo-
rithms, which are described in this paper we can solveapaifferential equa-
tions with random and fuzzy parameters.

Keywords: fuzzy sets, random sets, interval arithmetic, fuzagigladifferential
equations.
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1 Introduction
Fuzzy number is a fuzzy sEtof the real lineR, which is convex

and normal. LeF(R) denote the set of all fuzzy numbers, which are
upper semicontinuous and have compact suppoki [IfF (R)

pr :ROX — pp (O[O0 OR (1)
we can also write

H(]):RXF(R)L(X,F) - p(x|F)O[0 OR )

2 Fuzzy equation
Let us consider the following equations with fugarameter

d
d—i:hx,u(O)zuo. (3)

An analytical solution of this equation is the dalling

2
() = +uo. (@)

The membership function of the fuzzy solutiog (x) JF(R cgn
be calculated using the extension principle

HEIUE(X)= sup  pe(h). (5)
h:gf:h)2(2+u0
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Let us consider some partial differential equationith vector of
fuzzy parameterk J F

k
H{x,h,u,a—“,...,a—”}:o, umv (6)
ox

axk

whereV is some functional space. If we know the exacutsmh of
the problem (6)u =u(x,h )we can calculate the fuzzy solution us-

ing the extension principle:

pElUE ()= sup g (h) (7)
h:&=u(x,h)

The same solution can be calculated usirtevel cut method
(Buckley, Qy 1990, Buckley, Feuring 2000). The aigpn is the
following:

Algorithm 1
1) Calculatea-level cut of fuzzy parameteng] F

ho ={h:ue(h)za}. (8)

2) Calculate the solution of partial differenti@juations with inter-
val parameters:

0g (x) ={u(x,h):hOhg}. 9)
3) Calculate fuzzy membership function of the sohut
p(E lup () =sup{a:§0hg}. (10)

The most difficult part of this algorithm is theept2.
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3 Random sets interpretation of fuzzy

Let us consider probability spad€,Pn,Zo and interval-valued
random variable:

Ho:QOw - Hg OI(R) (11)
where | (R)is a set of all intervals.
Using such random variable, we can define upperlawer prob-
ability
PI(A) = Po{w: Hg (w) n Az O} (12)

Bel(A) = Po{w: Ho () O A (13)

Let us consider discrete random variable, whicksfyathe follow-
ing condition:

Ho () OHg(ap) O...0 Hg (wh) (14)

then we can define fuzzy membership function inftflewing way:

# (h) = Po{w:hOHg ()} (15)

Let us consider some mechanical system and perfar@nfunction
g(h), which has the following properties:

- if g(h) =0, then the structure is safe,
- if g(h) <0, then the structure failed.

Upper probability of failure of the structure cae Befined in the
following way:

P! = Pofw: g(Hq (@) n (~.0) % O} (16)
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If the structure has fuzzy parametefsF , then we can calculate
upper probability of failure in the following way:

P{ = sup up(h) (17)

h:g(h)<0
Upper probability of failure of the structures withrandom
(X :QOw - Xg(w)ORM) and fuzzy

(#p :R™Oh - pp (h)OR) parameters (i.ey = g(x,h ))can be
calculated using the following formula

Py =3 tix(r) ()Pa{X = Eq{ tx(r) ()} (18)
where
HxFy(X) = sup  pg (h) (19)
h:g(x,h)<0

4 Numerical methods of solution of partial differen tial
equations

Many problems in engineering can be described ysamtal differ-
ential equations particularly:

- static and dynamic of structures,

- biomechanics,

- heat and mass transfer,

- electromagnetic fields,

- meteorology etc.

The most popular methods of solution of such eqnoatare:
- finite element method (FEM),
- boundary element method (BEM),
- finite difference method (FDM).
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Most universal and popular is finite element metGairlet 1978).
The FEM algorithm has the following steps:
1) Formulate boundary value problem

L(x,u) =f(x), ulvV (20)

whereL (X, .)is differential operatorf(x )s some function and is

a functional space (e.g. Sobolev space).
2) Formulate variational equation of the problem

OvadVv, a(u,v)=1(v) (21)

3) Discretize domaim) using finite eIementUQe =Q and build
(S
a solution spac¥/},

Oup, OV, CuORN, up (%) = N(uU (22)

NI (®) .. NJY(X)
where N(x) =| ... is a matrix of shape functions.
NG - N (%)

An approximate solution has the following form:

uie(x):ZNﬁ(x)me, x0Q°® (i.e.up(x)=N®(xu®) (23)
J

uih(x):ZNij(x)Duj, xOQ  (i.e.up(x) =N(X)u) (24)
j

4) The approximate solution satisfies the followiragiational equa-
tion:

DVh DVh, a(uh,vh)zl(vh) (25)
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5) Vector of nodal solution can be calculated aslation of the fol-
lowing system of linear equation

Ku=Q (26)

whereK (stiffness matrix) and the vect@ are defined in the fol-
lowing way:

Kij =a(Ni,Nj) (27)

Q =1(Nj) (28)

6) If we know, the solution of the system of eqolat{26)u (vector
of nodal solution) we can calculate the value gfragimate solu-
tion between the nodes using equations (23, 24).

Finite element method was implemented in many comialeengi-
neering programs e.g.:

- ABACUS (http://www.hks.com/)

- ADINA (http://www.adina.com/)

- ANSYS (http://www.ansys.com/)

- etc.
Using this method we can solve problems with thadsaor even
millions degree of freedom.



8 Numerical solutions of fuzzy partial differential equationsand itsapplicationsin
computational mechanics

5 Numerical methods of solution of the fuzzy patrtial
differential equations

To solution of the fuzzy partial differential eqioats, we can also

apply algorithm of the finite element method. Iisthase, equation
(26) has the following form:

K(h)u=Q(h), hOh, (29)
or in nonlinear problems
K(h,u)Ju=Q(h), hOh, (30)

If we know the solutiorii, of parameter dependent system of equa-
tion (29)

0, =hull{u:K (h)u =Q(h),h Th,} (31)

(the symbolhull S denote the smallest interval, which contain the
setS) we can calculate a fuzzy membership functionhef tuzzy
nodal solutionug in the following way:

p(ulug) = sup{a:uddy) (32)

The exact solution sefu: K (h)u =Q(h),h Dﬁa} of the problem

(29) is very complicated because of this in applices we use only
the smallest interval which contain the exact soiuti.e.

hull{u : K (h)u =Q(h),h Oh,} (Kulpa et all 1998).
The fuzzy solution between the nodeg (x) can be calculated us-
ing the following formula:

MU uE (X)) =sup{a :ublg (X)} (33)
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where U, (x )is defined as follows

0, (x) =hull{un(x,h):hOh,} (34)

(i, (X) = hull{N(X)u : K (h)u = Q(h), hOh,} (35)

The finite difference method and the boundary elgnmeethod can
be also applied to calculation of numerical solutid the fuzzy par-
tial differential equation. With all mentioned metts, we can apply
the following general algorithm.

Algorithm 2
1) Calculatea-cut of fuzzy parametel:sa ={h:ug(h)za}.
2) Solve system of parameter dependent systemuatieq

0, =hull{u:K(h)u=Q(h),hOh,} (36)
3) Calculate fuzzy nodal soluticung
p(ulup) =sup{a:uDi,} (37)
4) Calculate fuzzy solution between the nodal oint (x)

MU uE (X)) =sup{a :ubdg (X)} (38)
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6 Systems of algebraic equations
with interval parameters

The most difficult part of second algorithm is tstep 2. It can be
shown that finding the solution of system of a éinenterval equa-
tion is NP-hard (Kreinovich et all 1998). Becau$¢hat the interval
solution G, , which is defined in the equation (36) can be tanly

in special cases.

6.1 Application of monotone functions

Many numerical examples shows, that the relatidwéen the solu-
tion u=u(h) and uncertain parametets is monotone (McWil-
liam 2000, Noor et all 2000, Pownuk 2000).

Let us consider functiog=u(h) and the intervalﬁ:[h_,h+]. If
functionu(h) is monotone, then the extreme values of the fonct
over the intervalh can be calculated using only the endpoints

h™,h*

§=[y",y"I=[minfu(h™),u(h™)}, max{u(h™),u(h™)} (39)

where

y~ = inf u(h), y* = sup u(h). (40)
h:hh h:hh

Let’s assume that the functian depends om parametersy,...,hy,

(.,e. u:R™Oh - u(h)OR"), which belong to them intervals

hl h (i.,e. h Dh) If this function is monotone then the extreme
values can be found after calculation all comborabf endpoints of
the multidimensional interval.



Systems of algebraic equations
with interval parameters 11

u” = min{uy; (h) : h OVertex(h)}, (41)
u" = max{u; (h) : h OVertex(h)}. (42)

WhereVertex(ﬁ) is a set of all vertex of the interval. Now we can
write

0 =[ug,u 1x[uz,us ]x..x[uy,ut] = hull u(h) (43)

To calculation of the vectain we have to calculate the value of the

function u(h) 2™ times. In the same way, we can calculate the so-
lution of the problem (36)

Ui =min{y; : K(h)u=Q(h),h OVertex(h)}, (44)

ui+ =max{y; : K(h)u =Q(h),h DVertex(ﬁ)}. (45)

Unfortunately, this method has very high computatlocomplexity
and cannot be applied to problems that are morelceted.

6.2 Application of sensitivity analysis

Let us consider a function: RCh - u(h)OR. If the derivative%

has constant sign then extreme values can be atddulising the
following formulas

ou(hp)

If >0, thenu” =u(h™), u" =u(h™) (46)

If &20)<0, thenu™ =u(h®), u® =u(h™) (47)
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- +
wherehg =N~ iRy .

In multidimensional case in order to calculate exte values of
functionu=u(h) (u; =u; (h)) we can compute the sign vec®r

-
i _| gy 9Yi(ho) . 9u; (ho)
S {sgn{ oy j sgn{ o ﬂ (48)

s =[S ,....5hl" (49)

e ]
Whereho:{ 5 %} =mid(h).

If function u; =u; (h) is monotone, then upper bound can be calcu-
lated using the following point

hiPPer = [i hypper T pgpper P (50)

where
if S, >0 then' KPP =h? (51)
if S, <0 then' KPP =hy . (52)

In this caseu;” =u; (hi™ ) In the same way, we can construct
lower bound of the functian =u; (h .)

h!ower — ihiower ihrl]?wer U (53)

where
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if S, >0 then' KPP =hy (54)
if S, <0 then' KPP =h?. (55)
and finally
um =ui (NP, U =y (hPP), (56)
0 =[ug,u]%..x[Um,Um]. (57)

We see that extreme values of the function u(h) can be calcu-

lated using the sign vecto® and the endpoints of interval
h!ower :hlower (Si ’ﬁ)’ hiupper = puPper (S; ’ﬁ) (58)
G =[u7,u7] = [0 (. )} upPe SR (59)

The vectorS' have to be calculated for each coordinate of te v
tor u i.e. n times. From the definition of the vectag$ arise that

h|OW€I’ (SI ’F]) — h|OW€I’ ((_1) [BI ’F]) (60)
hUPPEr (s ) = hUPPEr ((—1) [B', ) (61)

i.e. the sign vectos generate the same lower and upper bound as

vector (-1 S . From computational point of view, it is convemtie

to find independent sign vectors, which generatferéint lower and
upper bounds of the solution.
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IndS ={s"",...,.sK" (62)
0s™,s/" 0inds,(i # j) = (8" 2S™)0(S”™ # (-1 3/7)) (63)

According to my experience, number of the sign oecs!” s

much lower than number of the vectCBis(Pownuk 2001).
Now we can apply sensitivity analysis method tausoh of the
problem (36). Whole algorithm has the followingpste

Algorithm 3
1) Formulate parameter dependent system of equadtbninterval

parameters in the form (36). And calculal(dng )

K(h)uhd)=Q(hY), hd =mid(h,) (64)

, where

0
2) Fori=1,...m calculat duhg)

u(hy) _ 8Q(hy) oK (h)

uh2). 65
oh; oh; oh; (ha) (63)

K(h3)

3) For i=1,...n (n — number of degree of freedom) calculate the sign

vector
| g QUi (hg) {aui(ha)
Sa.—[sgn( oy ] sgn{ o H (66)

4) Calculate independent sign vectdrelSgn, :{Sla* ,...,Sf,* ug-
ing condition (63) and create vectdrsuch, that
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s, =s), wherej=U, (67)

5) Fori=1,...k calculate interval solutioﬁi;
ol =[uln'oe sty Ry} ulheere (st 7)) (68)
IndSoluting ={0%,...,.a"} (69)

6) Calculate extreme interval solutiog .
Fori=1,..n
~], where j=U; (70)

" = j*
Ugi =[Ugi Ugi

Computational complexity of this algorithm:

- step 1 — 1 solution systems of equations,

- step 2 -#m solution systems of equations,

- step 5 —2[k solution systems of equatiorts<{ k < n).

In presented algorithm we have to calculate a systieequation be-
tweenl+m+2 andl+m+2[n times.

6.3 Calculation of the solution between the nodes

Sometimes we would like to know the interval santil, (x) of

the boundary value problem in the pokEl Q between the nodal
points. If we assume that the functiapn=u; (x,h is)monotone (for

fixed xOQ), then to calculation of extreme values sensytigihaly-
sis can be applied.

First, we have to calculate sensitivity vecgr

« | . [ouxhd) [ ou (x,h2)
SC,—[&gn[—arn } sgn[—ahm }] (71)
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From the equation (24) arise that:

ou; (hg)
dhg

au; (x,h%) _ Nj; (x,hg)

(72)
ohq oh,

uj (hg) + Njj (x.hg)

au(hd)

The vectorsu(hg )
oh;

were calculated in the algorithm 3, be-

. au x,hO
cause of that to calculation eﬁf% we don’t have to solve

q
any system of linear equation.

Now we have to check if the sign vects}, is unique.

We assume that the sign vec®&} is unique if
0S OlndSign,, (Sh #S%)0(S, # (-)BY))  (73)
If the sign vectorS);, is not unique i.e.

OS2 OindSign,, (8P =sX) 0y =(-)BY)  (74)

then extreme solution can be calculated usingdhewing formulas

Ugi (x) = Nj; ('O (8B h g ))uf™ (75)
ugi (x) = Nij (,h PP (8B R g uf ™ (76)
Gigi (%) = [0gi (%), G ()] (77)

If the sign vectorS);, is unique, then we have to calculate a new in-
terval solution
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ok =[ulp'ower (5% Ry} ulhterer (s R ) (78)
next
sy’ =8} (79)
IndSign, := IndSign,, O{SK™"} (80)
IndSoluton ,, := IndSoution , O{GK™"} (81)

Extreme solution can be calculated using the fatgwormulas

Ugi () = Ny (x, ' (S8 R ug™ (82)
ugi () = Njj (x, h PP (SE R ug™ ™ (83)
(i (x) =[G (%), 05 (X)] (84)

7 Calculation of the value of fuzzy function

In technical applications very often we have tacchkte the value of
function, which depends on the solution of fuzzytiphdifferential
equations e.gy = f (x,u,h .)

Extreme values of functiof can be calculated using sensitivity
analysis:

[ (af(uthg)ho)) . (df(x.u(hg)ho)
s _|:s|gn[ . },...,sgn[ oh ﬂ (85)

where
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a (x,u(ho).ho) _ 3 (x,u(ho).ho) du(ho) , & (x,u(ho).h

ahi ou ahl ahl

Now we can apply similar procedure like in previous paragraph
If the sign vectors) is not unique, then extreme solution can be cal-
culated using the following formulas

fa )= f(uf ~h' (s h,)) (87)

fa ()= f0uf " nPP (SFh,) (88)

If the sign vectorS}, is unique, then calculate a new interval solu-
tion

ok =[ulp'ower (8% Ry} ulhterer (s R ) (89)
next
sy’ =8 (90)
IndSign, := IndSign,, O{SK™"} (91)
IndSoluton ,, := IndSoution , O{GK™"} (92)

Extreme values of the functidrcan be calculated using the follow-
ing formulas

fg ()= f(x,ug™ ™ hlower k2™ h ) (93)

fa ()= f(x,uk™ hupPer (skH™ 3 ) (94)
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8 Numerical example — plane stress problem
in theory of elasticity

Let us consider the following partial differential eqaas

E
20+v) "B 0=y

Uy Uy, x00Q, (95)

U,B’,,B‘a +,d:a =0, a,ﬁ=1,2

OapNg :t;, x0oQ,

whereE is a module of elasticityy is a Poisson’s ratiaj, are dis-
placements,p is a mass densityf, are mass forcesg,; are

stress, n, coordinate of the unit vector which is normal to the

boundaryoQ , t; are boundary traction.

These are equilibrium equations of the plane stresso#iagirob-
lem. We can write these equations in the variatiorah fo

[ojajav = [ pididQ+ [tayds (96)
Q Q 0Q

where &j; is a strain tensor. If we take into account thestitutive
equations

aij =Ciju€u (97)
and geometric equations
_1
&ij =5 (Ui j +uji) (98)

we can define the bilinear form
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a(u,v)=Iaijdfijd§2=IC”Hui'jkadQ (99)
Q Q

and the linear form

I(v) = j v dQ + j tiv;dQ (100)
Q 0Q

The variational equations of the theory of elastican be written in
the following form

OvaOV, a(u,v)=I1(v) (101)

Now we can solve this equations using FEM methodade Tocal
stiffness matrix can be written in the followingrio

.
K€= jBe D®B®dQ (102)
Qe
where
ONE NG NG |
~1 o9 2 o 3 9
aX]_ aX]_ 6x1
ONE ONS ONS
B® =l 0o —L1 o —2 o 32| (@103
6X2 6x2 6X2
ONS ON7 ONS ON5 ONF ONg
aX]_ 6X2 6X2 6x1 6X2 6x1

1 v 0
E® | ¢
D€ = SV 1 0 (104)
_,,e _,,e
1-v 0 0 1-v
L 2
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and N; are shape functions, which will be described later.
The load vector can be calculated from the followiggagions:

Q= jNTpfdQ+ jNTtds (105)
Q 0Q

In calculation, we will be use triangular elemenhiet is shown in
Fig. 1.

Fig. 1

Displacement in the element can be described in flmaviog way:
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— e _T — e_
Ny (x) 0 u

0 N7X| |ud

Geoo = o N20) 0 st e e 106)
us(x) 0 N3 e

N3(x) 0O us

0 N5 | |Yg

—

Shape functions of the element “e” satisfy the follagvconditions:
NF(x}) = g (107)

If we assume, that the shape functions are linear i.
NF(x) =af +b + ¢, (108)

then the functioere(x) has the following form:

2e 3¢ 3e 2e 2e 3e 3e 2e
X5 =X oX5T + (X5 = x5 )% + - X
Nle(X)le > TX %S G TG+ X1)2(109)
Ae
where
le le
1 X X5
A=l X x® (110)
3e 3e
L X
etc.

Let us consider structure, which is shown in Fig. 2
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T
E,v 4
BN , L
2
L
1
\\\\\\\\\\\\\

mcammmbnweagwnmtmﬂlﬂm,q:qﬁﬂ},vzaa
m

Table 1. Fuzzy Young's modulus

a a=0 o=1

EL [189, 231]GPa] 210 [GPa]
E2 [189, 231]GPa] 210 [GPa]
ES [189, 231] GPa] 210 [GPa]
Ea [189, 231] GPa] 210 [GPa]
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After applying algorithm 3 we get the following nantcal results:

Table 2. Fuzzy stress

a a=0 a=1
65y | [0.96749,0.974493KkPa] | 0.971063 kPl
6§a [1.02833, 1.02955]KPa] 1.02894 kPa]
636, [0.98086, 1.01719]KPa] 0.999086 kPa]
6?,6, [0.982807, 1.01914KPa] 1.00091 kPa]

Table 3. Fuzzy displacements

No. Ujg,a =0 [m]

1 [0, 0]

2 [0, O]

3 [0, 0]

4 [0, 0]

5 [3.2517e-14,7.49058e-13]
6 [3.81132e-12, 4.692e-12]
7 [-1.5243e-12,-4.9879e-13]
8 [ 4.4199e-12, 5.4275e-12 ]
9 [-1.5134e-12,1.0498e-12]
10 [8.1381e-12,9.9465e-12]
11 [-3.1758e-12,-1.7949e-13]
12 [8.7620e-12,1.0709e-11]

This problem has 8 degree of freedom.
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9 Numerical example — plane stress problem
in theory of elasticity

The equilibrium equations of a rod has the following form

i(EA%) +n=0
dx dx :

ulv

(111)

where E is an Young’s moduléeA is an area of cross sectianis a
load andV is some functional space. We can formulate the pnoble
(111) in the variational form:

Ovadv, a(u,v) =1(v) (112)
where
L du dv
a(u,v) = (J;EA&& dx (113)
L
[(v) = Invdx+ (114)
0

To solution of the problem (112) we can apply @nielement
method. Local stiffness matrix (in local coordinaiestem) has the
following form:

. epe 1 -1
K®= j(Be)T D®B8dx = ELeA { } (115)
Ve

where
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ofad]
D€ =[E®] (117)

Local stiffness matrix in global coordinate systeas the following
form:

K= | 7 (B8%)T D®BCCCdx (118)
Ve

where rotation matrix has the following form

v

X
Fig. 3
| cos(a®)  sin(a®) 0 0 |
ce=|~ sn(a®) cos(a®) 0 0 (119)
0 0 cos(a®) sin(a®)
0 0 -sin(@®) cos(a®)
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Local load vector in global coordinate system:
Q= | (C® T (N®) " ndx (120)
Ve
The structure is shown in the Fig. 4.

i

PN

NN ANS NN N NNNNN

Fig. 4

Numerical data are as followB=10 [kN], L=1 [m], v =03, the
Young’s modulus is the same like in the previouanagle. Interval
axial forces are shown in table 4.
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Table 4. Interval axial force

No. Axial force N]
1 [ 3145.34, 4393.45 ]
2 [ 1482.48, 1914.16 ]
3 [-172.138, -221.845 ]
4 [ 164.454, 279.737 ]
5 [ -958.619, -936.417 ]
6 [ 2459.35, 2536.53 ]
7 [ 1527.83, 1546.14 ]
8 [ -343.544, -357.966 ]
9 [ 1708.72, 1617.27 ]
10 [ -840.883, -841.035 ]
11 [ 1132.62, 1189.25]
12 [ 1532.73, 1547.37 ]
13 [ -338.641, -356.736 ]
14 [ 3028.51, 2962.81 ]
15 [ -932.071, -929.76 ]
16 [ -278.358, -245.009 ]
17 [ 1656.79, 1671.62 ]
18 [ -214.586, -232.489 ]
19 [ 4264.06, 4221.36 ]
20 [ -169.222, -168.335 ]
21 [ -751.05, -742.133 ]
22 [ 453.902, 470.55]
23 [ -1417.47, -1433.55 ]
24 [ 6437.89, 6417.04 ]
25 [ -7444.75, -7432.58 ]
26 [ -200.408, -202.065 ]
27 [ -2196.2, -2197.33 ]
28 [ 283.42, 285.763 ]
29 [ 4020.01, 4013.59]
30 [ -200.408, -202.065 ]
31 [ -9461.8, -9431.91 ]
32 [ 3589.87, 3583.79 ]
33 [ -3488.96, -3478.74 ]
34 [ 713.715, 704.035 ]
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35 [ 4929.89, 4924.37 |
36 [ 720.439, 696.638 |
37 [ 3580.36, 3594.25 |
38 [ -3482.95, -3485.36 ]
39 [ -9466.06, -9427.23 ]
40 [ 4010.55, 4024 ]
41 [-194.644, -208.406 ]
42 [-2188.83, -2205.43 |
43 [ 275.268, 294.73 ]
44 [-7448.38, -7428.59 ]
45 [ -194.644, -208.406 |
46 [ 6417.52, 6439.45 ]
47 [451.658, 473.02 ]
48 [-1419.72, -1431.08 ]
49 [-738.486, -755.954 |
50 [-166.773, -171.028 ]
51 [ 4242.96, 4244.56 |
52 [ 1655.57, 1672.95 |
53 [ -215.805, -231.149 ]
54 [-266.518, -258.031 ]
55 [-930.146, -931.887 |
56 [ 3007.62, 2985.78 ]
57 [ 1531.23, 1549.04 |
58 [ -340.144, -355.068 ]
59 [ 1144.66, 1176 ]
60 [-839.969, -841.95 |
61 [ 1686.62, 1641.68 ]
62 [ 1528.04, 1545.77 |
63 [ -343.334, -358.339 ]
64 [ 2470.18, 2524.72 ]
65 [-947.416, -949.597 ]
66 [ 253.654, 185.319 ]
67 [ 1683.18, 1701.27 |
68 [-188.192, -202.832 ]
69 [ 3683.74, 3761.16 ]
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10 Quasi-analytical method
Let us consider boundary value problem with fuzaygmeters

L(x,u,h) =f(x,h), udVv, hOF (121)

If we differentiate the boundary value problem wigspect toh we
get a new boundary value problem

,ulV, hOF (122)

H(X’u’h ou j _df(x.h)

"oy oh;

Let us assume that we know the solution of the daon value
problem (121) fom§ = mid(h, )i.e. ud (x) = u(x,h§).

Now we can substitute; :C_?Tu and we get a new boundary value
i
problem

of (x,h%)

H(X Ua(x) ha’ |) ah

y Vi DVi (123)

Problem (123) can be solved using any method. lkmeev the solu-
tion of the equations (123) we can calculate extrsoiution by us-
ing the algorithm 3.

Let us consider the following example

A b, u(0) = ug T2 (124)

The exact solution is the following

2
u(x, h) :h%+ Up [h? (125)
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If we calculate derivative of the boundary valuelgem (124) with
respect tdh we get

dfou)_, O _,, (126)
dx\ dh oh
or
dv
— =xU[h, v(0,h) = 2ugh (127)
adx
where
ou(x,h)
v(x,h) = ————= 128
(x,h) oh (128)
the solution of the equation (127) is the following
52
v(x, h) :7+2m0 (h (129)

If h>0, thenv(x,h)>0 and the functiomu = u(x, h) is monotone (for
fixed X) and extreme solution can be calculated in théovahg
way:

(g (%) = [Ug (X),ug ()] (130)
where
— _ -\ _ h;X2 —\2
Ug (X) =u(x,hy) = 5 +Ug [(hy) (131)
hix?

+Up [(h})? (132)

Uz (x) =u(x,hy) =
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It should be noted that if we know the numericdlison ug of the

problem (121) we could not calcula(;%]u— directly.

11 Finite difference method

The derivativea% can be calculated directly using the finite dif-
j
ference

au; (x,hg) h9 )

oh;

U (hd, . h0y +ah . hD) —ui (b, 1 D)

Ah;

(133)

=

The valuey; (x,hg )is a solution of the boundary value problem

L(x,u,h®) =f(x,h9), uOv. (134)

Other methods of calculation of the sensitivity dan find in the
book (Kleiber 1997).
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12 Point monotonicity tests

12.1 First order monotonicity tests

If derivative of the functioru =u(h )has constant sign, then we can
assume that the function=u(h ¥ monotone. The value of the

function aTu can be approximated by using the linear function:
i

0ua (h) _ du(ho) , & 0°ulho)

oh oh J.Z:1 oh;oh,;

(hj -h?) (135)

An interval function is an interval-valued functiohone or more in-
terval arguments. Consider a real-valued functiohreal variables

X1,...Xn and an interval functionf of interval variableg,....X, .
The interval functionf is said to be an interval extensiorf dff

O(Xgso %) ODg, f(XgoeX) = FO4Xy)  (136)

where D¢ is a domain of the functioin That is, if the arguments of

f are degenerate intervals (i.& =), then f(f(l,...,in) is a
degenerate interval equal fo(Xq,....X, - )
From properties of interval extensions (NeumaigdQ)Srise that

if 00

aiq (M - aum(h
%,thenDhDha, ")

0. (137)

and we can assume that the functionu(h is lnonotone.
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12.2 High order monotonicity tests

We can also approximate derivative of the functionu(h) using
high order polynomials

Oy (h) _ duhg) , & 9%u(ho)

h: —h%) +
oh, oh, Z: oh;oh; (hy =hy)
I (138)
1 0 u(ho) 0 0
+Z- > > ————(h; -hj)(h, —h)
2 i ohon, ahk
al, o (N I TP ()
|fODM,thenDhDha,(a+()¢o. (139)
i i

and we can assume that the functionu(h is lnonotone.

13 Numerical example
- displacement of the shell structure

The equilibrium equations of shell structures canwbitten in the
following form:

TA% |5 -bIMAY |5 +b7 =0
T g +M % | g +b° =0 140
TA%ng +bIMAng =p?, x00Q (140)

M A7 |5 ng +%(M WBrang)=p®, x00Q

where
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u@ Iﬁ=ua,ﬁ+{a}u", u",ﬁ:ﬂ’ o =12 (141
By oxP
T
{jk}‘zg (9jik *+9k.j ~9jkl) (142)

gij is a metric tensor.
Let us consider shell structure, which is showRiaq 5.

Fig. 5

In calculation we assume the following numerical tada
E0[20010°,22010°][MPa], v0[0203,  L=0.263 [m],

r=0.126 [m],F=444.8 [N],t= 238ELO_3[m] . We will be looking for
an interval displacement in direction of the foFcdJsign first order
monotonicity test we can check monotonicity of tkelution.
Because the function =u(E,v i monotone, then extreme values

of the solution can be found using only the endiomf given
intervals. The interval solution is as follows:

a=0: u0[- 0.043514-0.03744 [m], (143)
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a=1: u = - 0.04102 . (144)

Using point monotonicity test we can calculate ititerval solution
only in some selected points. In this example msimal FEM pro-
gram Ansys was applied.

14 Taylor model of the solution

If the solution is sufficiently smooth, then we capproximate them
by using Taylor series

0
i () = (1) + 3 2 0e)
= on

(h —hg). (145)

Extreme values of the solution can be approximated dirbgtus-
ing equation (145) and interval arithmetic

. . m au; (h
i =0 (Ag) =u () + Y 2 Na)
= o]

(g —h3). (146)

This method has very low computational complexity{ system of
equations) (Akapan et all 2001). Unfortunately, the equation) (146
gives only approximate solution.
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15 Interval monotonicity tests

15.1 Linear equations

Let us consider the problem (36) and assume that we kresoth-
tion of the following systems of linear interval eqaat

K(hga)u=Q(hy). (147)
2oy 0u _0Q(hg) 0K (hg) . o
Rha) g =50 o Jha)- (148)
where
((hg) =hull > (K (hy),Qhg)) - (149)

G () <~ o 0(h,) K(,). -
00— -2 =hull}| K(hg),——2 ——-2%{,(h,) |, (150
on Z( (hg) on on a(hg) |, (150)
then the solution of the problem (36) is monotonéh guaranteed
accuracy).
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15.2 Numerical example — heat transfer

Let’s us consider heat transfer problem

L 1df,dT0) 62
Ri<r<Ry: rdr(rﬂ ar )+Q 0
r=Ry -/IdT—(r):a(T(r)—Tb) . (151)
r=Ry : T(r)=T,

In calculation we assume the following numerical data

R =0.0005 fn], R, =10[R;, a= 2000{ w } Tp, =32°C,
2
m* [K
T, =37°C, Q= 10245{ﬂ} , A0[021,0.23 {ﬂ} .
m3 mK

Numerical solutions are shown in the table 5.

Table5. Interval temperature

No T1°C] T'[°C]
1 36.586 36.619
2 35.470 35.494
3 34.782 34.800
4 34.282 34.298
5 33.894 33.582
6 33.302 33.308
7 33.065 33.070
8 32.857 32.859
9 32.669 32.671

10 32.500 32.500
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15.3 Nonlinear equations

Sometimes system of algebraic equations is nonlinea
F(x,u,h)=0, hOh,. (152)
From implicit function theorem arise that

oF ou _ oF

& i=l..m 153
duoh  oh m (133)

Equation (153) is a system of linear equation wit‘rknowngTu,
i

because of that

[ ﬁ 0F1 0F1 6F1 ﬁ_
6U1 an -1 6hj aui_l aun
oF,  OF, OF, OF,  OF,
9 6u11 an -1 6hj 6ui+1 aun
U _ L ]
=- , (154)
on; oF
ou
Vi aF \
. o\u,....Ui—1,hi ,Ui 41,...,u
oy _ _ (1 i1 Yi+1 n) . (155)
on; oF
Ju

From equation (155) arrays, that if the followirgt@rminates

oF

oF| | oF |
ou

; : (156)
‘6(u1,...,ui_1, h; ,ui+1,...,un)‘
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. . OU; .
have constant sign, then the derlvatwﬁ'— has also constant sign
j
and the functions); =u;(...,hj,...) are monotone.

From properties of the determinates and Darboxrémarise, that
if

| oF(x,u(h), h) |¢ 0 . (157)

OhOhy,,
‘a(ul,...,ui_l,hj ,ui+1,...,un)‘

OhOhy, (158)

6F(x,u(h),h)| 40
ou o

i.e. the Jacobean matrix are regular, then the tifume
Ui =U;(...,hj,...) are monotone.

From properties of interval arithmetic, arise that

OF(uth).h)| - [aF (g g )|
TR T

OhOhy, (159)

and

I | 0F(x,u(h),h) | O
o ‘6(ul,---,ui—1’hj’”i+1""’u”)‘

S (160)
D| OF(uhg).hy) |

‘6(u1,...,ui_1,hj ,ui+1,...,un)"

We can see that, if the interval Jacobean matrigg9, 160) are
regular, then the functiong =uj(h gre monotone.
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15.4 Numerical example — frame structure

The equilibrium equations of beam is as follows:

2 2
4 Vg9l o uov. (161)
dx?2 dx?2

If we apply the finite element, we get equilibritaquations in the
following form:

K(hu=Q. (162)

Let us consider a structure, which is shown inRige 6.

L
A & A P R
& I % s
] s Py v F:
Ll L
a %o
@A oA H
Ir'q * I'e ®
q o
I_

LSS S ST S S S S S S S S S S S S S S S S S S

Fig. 6

In calculation we assume the following daE1[210,220[GPa ],

4
JD{O'OS ,0'0554} [m?*], AO[0.05%,0.055°][m?], L=H=1 [m],
12 ' 12

P=1 [kN].
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Table6. Interval displacements

No. o [m] g [ml
1 0.035716 0.037414
2 0.000008 0.000009
3 -0.011230 -0.010718
4 0.035716 0.037414
5 -0.000021 -0.000017
6 -0.011230 -0.010718
7 0.082163 0.086067
8 0.00009 0.000010
9 -0.007494 -0.007151
10 0.082163 0.086067
11 -0.000033 -0.000026
12 -0.007494 -0.007151

15.5 Subdivision

The interval extension of the Jacobean matrix megone singular
even for very narrow intervals, . In this case, we can divide these
intervals and repeat procedure again.
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16 Optimization methods

16.1 Description of the algorithm

If the intervalsﬁa are very wide, then we cannot apply methods,

which were described below. In such situation, rojation meth-
ods can be applied.

minu; max U
U, O 4L(xuh)y=f(h) uly O {L(x,u,h) =f(h). (163)
hOh,,udV hOh,,uOV

Approximate solution can be defined as follows:

min u; max uj
Uig O 4K(Mu=Q(h) ujy O {K(u=Q(h). (164)
hOhg, hOhg,

16.2 Numerical example — displacements of beam

Let us consider beam structure, which is shownign 'F.

L
5 L
q
¥ v ¥ v ¥ v v vy vy
ANE
177777 7

Fig. 7
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The equilibrium equation has the following form

d? d2u
— BJ— | =q(X),
dx? ( dxz}

2 2
qu:o,{gjzofj“m:o,d {gq:o
2 2 dx? dx? \ 2

In calculations we assume thaED[Z.OELO5 ,2.2E105][MPa, ]
4
JD{omg“ 0.05T }Un4L

.(165)

L =[0.9991.007 [rr],

12 12
g0 [9.9,10.1[kN]. Numerical results are shown in Fig. 8.

Fig. 8
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17 Conclusions

1) Calculation of the solutions of the fuzzy pdrddferential equa-
tions is in general very difficult (NP-hard).

2) In engineering applications the relation betwdensolution and
the uncertain parameters is usually monotone.

3) Using methods which are based on sensitivitylyaisgawe can
solve very complicated problems of computationatiagics (even
with thousands degree of freedom).

4) If we apply the point monotonicity tests we cee results, which
were generated by the existing engineering software

5) Reliable methods of solution of the fuzzy padifferential equa-
tions are based on the interval arithmetic. Thesthaus have high
computational complexity.

6) In some cases (e.g. if we know analytical soh)tithe optimiza-
tion method can be applied.

7) In some special cases we can predict the solofithe fuzzy par-
tial differential equations.

8) The fuzzy partial differential equation can Ippled to modeling
of mechanical systems (structures) with uncertaimameters.
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