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Abstract 
 

Calculation of the solution of fuzzy partial differential equations is in general 
very difficult. We can find the exact solution only in some special cases. Fortu-
nately, in most of engineering applications relations between the solutions and un-
certain parameters are monotone (we can assume that, when the uncertainty of the 
parameters is sufficiently small). In this case, the exact solution can be calculated 
using only endpoints of given intervals. In order to improve the efficiency of cal-
culation we can apply sensitivity analysis.  

In this paper, a very efficient algorithm of solution was presented. This algo-
rithm is based on finite element method (or any other numerical method of solu-
tion PDE like for example FEM or BEM) and sensitivity analysis. Using this 
method we can solve engineering problems with thousands degree of freedom. 
Fuzzy partial differential equations can be applied for modeling of mechanical 
system (structures) with uncertain parameters.  

To construct the fuzzy membership function random sets can be applied. This 
theory contains fuzzy sets and probability theory as special cases. Using algo-
rithms, which are described in this paper we can solve partial differential equa-
tions with random and fuzzy parameters. 
 
Keywords: fuzzy sets, random sets, interval arithmetic, fuzzy partial differential 
equations. 
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1 Introduction 

Fuzzy number is a fuzzy set F of the real line R, which is convex 
and normal. Let F(R) denote the set of all fuzzy numbers, which are 
upper semicontinuous and have compact support. If )(RFF ∈  
 
 RxxR FF ⊂∈→∋ ]1,0[)(: µµ  (1) 
 
we can also write 
 
 RFxFxRFR ⊂∈→∋× ]1,0[)|(),()(:.)|(. µµ  (2) 

2 Fuzzy equation 

Let us consider the following equations with fuzzy parameter 
 

 0)0( , uuhx
dx

du == . (3) 

 
An analytical solution of this equation is the following 
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The membership function of the fuzzy solution )()( RFxuF ∈  can 
be calculated using the extension principle 
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Let us consider some partial differential equations with vector of 
fuzzy parameters F∈h  
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where V is some functional space. If we know the exact solution of 
the problem (6) ),( hxuu =  we can calculate the fuzzy solution us-
ing the extension principle: 
 
 ( ) )()(|

 :
hxu

�

h)u(x,
�

h
FF sup µµ

=
=  (7) 

 
The same solution can be calculated using α-level cut method 
(Buckley, Qy 1990, Buckley, Feuring 2000). The algorithm is the 
following: 
 
Algorithm 1 
1) Calculate α-level cut of fuzzy parameters F∈h  
 

 })(:{ˆ αµα ≥= hhh F . (8) 

 
2) Calculate the solution of partial differential equations with inter-
val parameters: 
 

 }ˆ:),({)(ˆ αα hhhxuxu ∈= . (9) 

 
3) Calculate fuzzy membership function of the solution: 
 
 }ˆ:{))(|( ααµ u

�
xu

�
∈= supF . (10) 

 
The most difficult part of this algorithm is the step 2. 
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3 Random sets interpretation of fuzzy 

Let us consider probability space ),,( ΩΩ ΣΩ P  and interval-valued 
random variable: 
 

 )(ˆ:ˆ RIHH ∈→∋Ω ΩΩ ω  (11) 
 
where )(RI  is a set of all intervals. 
Using such random variable, we can define upper and lower prob-
ability 
 

 })(ˆ:{)( ∅≠∩= ΩΩ AHPAPl ωω  (12) 
 

 })(ˆ:{)( AHPABel ⊆= ΩΩ ωω  (13) 
 
Let us consider discrete random variable, which satisfy the follow-
ing condition: 
 

 )(ˆ...)(ˆ)(ˆ
21 nHHH ωωω ΩΩΩ ⊇⊇⊇  (14) 

 
then we can define fuzzy membership function in the following way: 
 

 )}(ˆ:{)( ωωµ ΩΩ ∈= HhPhF  (15) 
 
Let us consider some mechanical system and performance function 

)(hg , which has the following properties: 
- if 0)( ≥hg , then the structure is safe, 
- if 0)( <hg , then the structure failed. 
Upper probability of failure of the structure can be defined in the 
following way: 
 

 })0,())(ˆ(:{ ∅≠−∞∩= ΩΩ
+ ωω HgPPf  (16) 
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If the structure has fuzzy parametersF∈h , then we can calculate 
upper probability of failure in the following way: 
 

 )(
0)(:

h
hh

F
g

f supP µ
<

+ =  (17) 

 
Upper probability of failure of the structures with random 

( nR∈→∋Ω ΩΩ )(: ωω XX ) and fuzzy 

( RR F
m

F ∈→∈ )( : hh µµ ) parameters (i.e. ),( hxgy = ) can be 
calculated using the following formula 
 

 )}({}{)( )()( xxx x
x

x FFf EPP µµ ΩΩ
+ == �  (18) 

 
where 
 
 )()(

0)(:
)( hx

hx,h
x F

g
F sup µµ

<
=  (19) 

4 Numerical methods of solution of partial differen tial 
equations  

Many problems in engineering can be described using partial differ-
ential equations particularly: 

- static and dynamic of structures, 
- biomechanics, 
- heat and mass transfer, 
- electromagnetic fields, 
- meteorology etc. 

 
The most popular methods of solution of such equations are: 

- finite element method (FEM), 
- boundary element method (BEM), 
- finite difference method (FDM). 
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Most universal and popular is finite element method (Ciarlet 1978). 
The FEM algorithm has the following steps: 
1) Formulate boundary value problem 
 
 V∈= uxfux,L    ),()(  (20) 
 
where ) . (x,L  is differential operator, )(xf  is some function and V is 
a functional space (e.g. Sobolev space). 
2) Formulate variational equation of the problem 
 
 )(),(   , vvuv laV =∈∀  (21) 
 

3) Discretize domain Ω  using finite elements Ω=Ω
�
e

e  and build 

a solution space hV  

 

 uxNxuuu )()(,, =∈∃∈∀ h
N

hh RV  (22) 
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xN  is a matrix of shape functions. 

An approximate solution has the following form: 
 

 ))()( (i.e.      ,)()( eee
h

e

j

e
j

e
ij

e
i uNu uxNxuxxx =Ω∈⋅= �  (23) 

 

 ))()( (i.e.       ,)()( uxNxuxxx =Ω∈⋅= � h
j

jij
h
i uNu  (24) 

 
4) The approximate solution satisfies the following variational equa-
tion: 
 
 )(),(   , hhhhh laV vvuv =∈∀  (25) 
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5) Vector of nodal solution can be calculated as a solution of the fol-
lowing system of linear equation 
 
 QKu =  (26) 
 
where K (stiffness matrix) and the vector Q are defined in the fol-
lowing way: 
 
 ),( jiij aK NN=  (27) 

 
 )( ii lQ N=  (28) 

 
6) If we know, the solution of the system of equation (26) u (vector 
of nodal solution) we can calculate the value of approximate solu-
tion between the nodes using equations (23, 24). 
 
Finite element method was implemented in many commercial engi-
neering programs e.g.: 

- ABACUS (http://www.hks.com/) 
- ADINA (http://www.adina.com/) 
- ANSYS (http://www.ansys.com/) 
- etc. 

Using this method we can solve problems with thousands or even 
millions degree of freedom. 
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5 Numerical methods of solution of the fuzzy partial 
differential equations  

To solution of the fuzzy partial differential equations, we can also 
apply algorithm of the finite element method. In this case, equation 
(26) has the following form: 
 

 )()( hQuhK = ,   αhh ˆ∈  (29) 
 
or in nonlinear problems 
 

 )(),( hQuuhK = ,   αhh ˆ∈  (30) 
 
If we know the solution αû  of parameter dependent system of equa-
tion (29)  
 

 }ˆ),()(:{ˆ αα hhhQuhKuu ∈== hull  (31) 
 
(the symbol Shull  denote the smallest interval, which contain the 
set S) we can calculate a fuzzy membership function of the fuzzy 
nodal solution Fu  in the following way: 
 
 }ˆ:{)|( ααµ uuuu ∈= supF  (32) 
 
The exact solution set }ˆ),()(:{ αhhhQuhKu ∈=  of the problem 
(29) is very complicated because of this in applications we use only 
the smallest interval which contain the exact solution i.e. 

}ˆ),()(:{ αhhhQuhKu ∈=hull  (Kulpa et all 1998). 

The fuzzy solution between the nodes )(xu F  can be calculated us-
ing the following formula: 
 
 )}(ˆ:{))(|( xuuxuu ααµ ∈= supF  (33) 
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where )(ˆ xuα  is defined as follows 

 

 }ˆ:),({)(ˆ αα hhhxuxu ∈= hhull  (34) 

 
i.e. 
 

 }ˆ  ),()(:)({)(ˆ αα hhhQuhKuxNxu ∈== hull  (35) 

 
The finite difference method and the boundary element method can 
be also applied to calculation of numerical solution of the fuzzy par-
tial differential equation. With all mentioned methods, we can apply 
the following general algorithm. 
 
Algorithm 2 
1) Calculate α-cut of fuzzy parameters })(:{ˆ αµα ≥= hhh F . 

2) Solve system of parameter dependent system of equation 
 

 }ˆ),()(:{ˆ αα hhhQuhKuu ∈== hull  (36) 

 
3) Calculate fuzzy nodal solution Fu  
 
 }ˆ:{)|( ααµ uuuu ∈= supF  (37) 

 
4) Calculate fuzzy solution between the nodal points )(xu F  
 
 )}(ˆ:{))(|( xuuxuu ααµ ∈= supF  (38) 
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6 Systems of algebraic equations  
with interval parameters  

The most difficult part of second algorithm is the step 2. It can be 
shown that finding the solution of system of a linear interval equa-
tion is NP-hard (Kreinovich et all 1998). Because of that the interval 
solution αû , which is defined in the equation (36) can be found only 

in special cases. 

6.1 Application of monotone functions 

Many numerical examples shows, that the relation between the solu-
tion u=u(h) and uncertain parameters h is monotone (McWil-
liam 2000, Noor et all 2000, Pownuk 2000).  

Let us consider function y=u(h) and the interval ],[ˆ +−= hhh . If 
function u(h) is monotone, then the extreme values of the function u 
over the interval ĥ  can be calculated using only the endpoints 

+− hh , . 
 

 )}](),({)},(),({[],[ˆ +−+−+− == huhumaxhuhuminyyy  (39) 
 
where 
 

 ).(   ),(
ˆ:ˆ:

husupyhuinfy
hhhhhh ∈

+

∈

− ==  (40) 

 
Let’s assume that the function u  depends on m parameters mhh ,...,1  

(i.e. nm RR ∈→∋ )(: huhu ), which belong to the m intervals 

mhh ˆ,...,ˆ
1  (i.e. hh ˆ∈ ). If this function is monotone then the extreme 

values can be found after calculation all combination of endpoints of 
the multidimensional intervalĥ .  
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 )},ˆ(:)({ hhh Vertexuminu ii ∈=−  (41) 
 

 )}.ˆ(:)({ hhh Vertexumaxu ii ∈=+  (42) 
 

where )ˆ(hVertex  is a set of all vertex of the interval ĥ . Now we can 
write 
 

 )ˆ( ],[...],[],[ˆ 2211 huu hulluuuuuu nn =×××= +−+−+−  (43) 
 
To calculation of the vector û  we have to calculate the value of the 

function )(hu  m2  times. In the same way, we can calculate the so-
lution of the problem (36) 
 

 )},ˆ( ),()(:{ hhhQuhK Vertexuminu ii ∈==−  (44) 
 

 )}.ˆ( ),()(:{ hhhQuhK Vertexumaxu ii ∈==+  (45) 
 
Unfortunately, this method has very high computational complexity 
and cannot be applied to problems that are more complicated. 

6.2 Application of sensitivity analysis 

Let us consider a function RhuhRu ∈→∋ )(: . If the derivative 
h

u

∂
∂

 

has constant sign then extreme values can be calculated using the 
following formulas 
 

 If 0
)( 0 >

∂
∂

h

hu
, then )(  ),( ++−− == huuhuu  (46) 

 

 If 0
)( 0 <

∂
∂

h

hu
, then )(  ),( −++− == huuhuu  (47) 
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where )ˆ(
20 hmid

hh
h =+=

+−
. 

In multidimensional case in order to calculate extreme values of 

function u=u(h) ( )(hii uu = ) we can compute the sign vector iS  
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 Ti
m

ii SS ] ,..., [ 1=S  (49) 

 

where )ˆ(
2

...
2

11
0 hh mid

hhhh
T

mm =��

�

���
�

++
=

+−+−
. 

If function )(hii uu =  is monotone, then upper bound can be calcu-

lated using the following point 
 

 [ ]Tupper
m

iupperiupper
i hh ...1=h  (50) 

 
where 
 

 if 0>i
kS  then += k

upper
k

i hh  (51) 

 

 if 0<i
kS  then −= k

upper
k

i hh . (52) 

 

In this case )( upper
iii uu h=+ . In the same way, we can construct 

lower bound of the function )(hii uu = . 

 

 [ ]Tlower
m

ilowerilower
i hh ...1=h  (53) 

 
where 
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 if 0>i
kS  then −= k

upper
k

i hh  (54) 

 

 if 0<i
kS  then += k

upper
k

i hh . (55) 

 
and finally 
 

 )( lower
iii uu h=− ,   )( upper

iii uu h=+ , (56) 

 

 ],[...],[ˆ 11
+−+− ××= mm uuuuu . (57) 

 
We see that extreme values of the function )(huu =  can be calcu-

lated using the sign vectors iS  and the endpoints of interval ĥ  
 

 )ˆ,( hShh ilowerlower
i = ,   )ˆ,( hShh i

upperupper
i =  (58) 

 

 ( ) ( )] )ˆ,( ,)ˆ,([],[ˆ hShhSh iupper
i

lower
iii uuuuu == −−  (59) 

 

The vector iS  have to be calculated for each coordinate of the vec-

tor u i.e. n times. From the definition of the vectors iS  arise that 
 

 )ˆ,)1(()ˆ,( hShhSh ilowerilower ⋅−=  (60) 

 

 )ˆ,)1(()ˆ,( hShhSh iupperiupper ⋅−=  (61) 
 

i.e. the sign vector iS  generate the same lower and upper bound as 

vector iS⋅− )1( . From computational point of view, it is convenient 
to find independent sign vectors, which generate different lower and 
upper bounds of the solution. 
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 },...,{ **1 kIndS SS=  (62) 

 

 )))1(()(()(,, ****** jiijji jiIndS SSSSSS ⋅−≠∧≠�≠∈∀ (63) 

 

According to my experience, number of the sign vectors *jS  is 

much lower than number of the vectors iS  (Pownuk 2001).  
Now we can apply sensitivity analysis method to solution of the 
problem (36). Whole algorithm has the following steps 
 
Algorithm 3 
1) Formulate parameter dependent system of equation with interval 

parameters in the form (36). And calculate )( 0
αhu  

 

 )ˆ(    ),()()( 0000
ααααα hhhQhuhK mid==  (64) 

 

2) For i=1,...,m calculate 
ih∂

∂ )( 0
αhu

, where 
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3) For i=1,...,n (n – number of degree of freedom) calculate the sign 
vector 
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4) Calculate independent sign vectors },...,{ **1 kIndSign ααα SS=  us-

ing condition (63) and create vector U such, that 
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 i
ji Uj ==     where,*

αα SS  (67) 

 

5) For i=1,...,k calculate interval solution *ˆ i
αu  

 

 ( ) ( )] )ˆ,( ,)ˆ,([ˆ *** hShuhShuu iupperiloweri
ααα =  (68) 

 

 }ˆ,...,ˆ{ **1 kIndSolutin ααα uu=  (69) 

 
6) Calculate extreme interval solutionαû . 

For i = 1,...,n 
 

 i
j
i

j
ii Ujuuu == −−      where],,[ˆ **

ααα  (70) 

 
Computational complexity of this algorithm: 
- step 1 – 1 solution systems of equations, 
- step 2 – m solution systems of equations, 
- step 5 – k⋅2  solution systems of equations ( nk ≤≤1 ). 
In presented algorithm we have to calculate a system of equation be-
tween 21 ++ m  and nm ⋅++ 21  times. 

6.3 Calculation of the solution between the nodes 

Sometimes we would like to know the interval solution )(ˆ xuα  of 

the boundary value problem in the point Ω∈x  between the nodal 
points. If we assume that the function ),( hxii uu =  is monotone (for 

fixed Ω∈x ), then to calculation of extreme values sensitivity analy-
sis can be applied. 

First, we have to calculate sensitivity vectorxSα  
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From the equation (24) arise that: 
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The vectors )( 0
αhu , 

jh∂
∂ )( 0

αhu
 were calculated in the algorithm 3, be-

cause of that to calculation of 
q

i

h

u

∂
∂ ),( 0

αhx
 we don’t have to solve 

any system of linear equation.  

Now we have to check if the sign vector xSα  is unique.  

We assume that the sign vector xSα  is unique if 

 

 )))1(()(  , *** xx SSSSS αααααα ⋅−≠∧≠∈∀ iii IndSign  (73) 

 

If the sign vector xSα  is not unique i.e. 

 

 )))1(()(  , *** xx SSSSS αααααα ⋅−=∧=∈∃ ppp IndSign  (74) 

 
then extreme solution can be calculated using the following formulas 
 

 −− = ** ))ˆ,(,()( p
j

plower
iji uNu αααα hShxx  (75) 

 

 ++ = ** ))ˆ,(,()( p
j

pupper
iji uNu αααα hShxx  (76) 

 

 )](ˆ),(ˆ[)(ˆ xxx +−= iii uuu ααα  (77) 

 

If the sign vector xSα  is unique, then we have to calculate a new in-

terval solution 
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 ( ) ( )] )ˆ,( ,)ˆ,([ˆ *1 hShuhShuu xx
ααα

upperlowerk =+  (78) 

 
next 
 

 xSS αα =+ *1k  (79) 

 

 }{: *1+∪= kIndSignIndSign ααα S  (80) 

 

 }ˆ{: *1+∪= kIndSoutionIndSoluton ααα u  (81) 

 
Extreme solution can be calculated using the following formulas 
 

 −++− = *1*1 ))ˆ,(,()( k
j

klower
iji uNu αααα hShxx  (82) 

 

 ++++ = *1*1 ))ˆ,(,()( k
j

kupper
iji uNu αααα hShxx  (83) 

 

 )](ˆ),(ˆ[)(ˆ xxx +−= iii uuu ααα  (84) 

 

7 Calculation of the value of fuzzy function 

In technical applications very often we have to calculate the value of 
function, which depends on the solution of fuzzy partial differential 
equations e.g. ),,( huxfy = .  
Extreme values of function f can be calculated using sensitivity 
analysis: 
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where 
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Now we can apply similar procedure like in previous paragraph. 
If the sign vector xSα  is not unique, then extreme solution can be cal-
culated using the following formulas 
 

 ))ˆ,(,,()( **
αααα hShuxx plowerpff −− =  (87) 

 

 ))ˆ,(,,()( **
αααα hShuxx pupperpff ++ =  (88) 

 

If the sign vector xSα  is unique, then calculate a new interval solu-

tion 
 

 ( ) ( )] )ˆ,( ,)ˆ,([ˆ *1 hShuhShuu xx
ααα

upperlowerk =+  (89) 

 
next 
 

 xSS αα =+ *1k  (90) 

 

 }{: *1+∪= kIndSignIndSign ααα S  (91) 

 

 }ˆ{: *1+∪= kIndSoutionIndSoluton ααα u  (92) 

 
Extreme values of the function f can be calculated using the follow-
ing formulas 
 

 ))ˆ,(,,()( *1*1
αααα hShuxx +−+− = klowerkff  (93) 

 

 ))ˆ,(,,()( *1*1
αααα hShuxx ++++ = kupperkff  (94) 
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8 Numerical example – plane stress problem  
in theory of elasticity  

Let us consider the following partial differential equations  
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u  (95) 

 
where E is a module of elasticity, ν  is a Poisson’s ratio, αu  are dis-

placements, ρ  is a mass density, αf  are mass forces, αβσ  are 

stress, αn  coordinate of the unit vector which is normal to the 

boundary Ω∂ , *
αt  are boundary traction. 

These are equilibrium equations of the plane stress elasticity prob-
lem. We can write these equations in the variational form 
 

 ���
Ω∂ΩΩ

+Ω= dSutdufdV iiiiij δδρδεσ  ij  (96) 

 
where ijε  is a strain tensor. If we take into account the constitutive 

equations 
 
 klijklij C εσ =  (97) 

 
and geometric equations 
 

 )(
2

1
,, ijjiij uu +=ε  (98) 

 
we can define the bilinear form 
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 ��
ΩΩ

Ω=Ω= dvuCda lkjiijklijij ,,),( δεσvu  (99) 

 
and the linear form 
 

 ��
Ω∂Ω

Ω+Ω= dvtdvfl iiiiρ)(v  (100) 

 
The variational equations of the theory of elasticity can be written in 
the following form 
 
 )(),(   , vvuv laV =∈∀  (101) 
 
Now we can solve this equations using FEM method. The local 
stiffness matrix can be written in the following form  
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and iN  are shape functions, which will be described later. 

The load vector can be calculated from the following equations: 
 

 ��
Ω∂Ω

+Ω= dSd TT tNfNQ ρ  (105) 

 
In calculation, we will be use triangular element, which is shown in 
Fig. 1. 
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Fig. 1 

 
 
Displacement in the element can be described in the following way: 
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Shape functions of the element “e” satisfy the following conditions: 
 

 ijj
e
iN δ=)(x  (107) 

 
If we assume, that the shape functions are linear i.e. 
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then the function )(1 xeN  has the following form: 
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etc. 
Let us consider structure, which is shown in Fig. 2. 
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Fig. 2 

In calculation we assume that L=1 [m], ��
�

��
�

=
m

kN
q  1 , 3.0=ν . 

Table 1. Fuzzy Young’s modulus 

α α=0 α=1 

1ˆαE  [189, 231][GPa] 210 [GPa] 

2ˆαE  [189, 231][GPa] 210 [GPa] 

3ˆαE  [189, 231] [GPa] 210 [GPa] 

4ˆαE  [189, 231] [GPa] 210 [GPa] 
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After applying algorithm 3 we get the following numerical results: 
 

Table 2. Fuzzy stress 

α α=0 α=1 
1ˆ ασ y  [0.96749, 0.974493] [kPa] 0.971063 [kPa] 

2ˆ ασ y  [1.02833, 1.02955] [kPa] 1.02894 [kPa] 
3ˆ ασ y  [0.98086, 1.01719] [kPa] 0.999086 [kPa] 

4ˆ ασ y  [0.982807, 1.01914] [kPa] 1.00091 [kPa] 

 

Table 3. Fuzzy displacements 

No. 0,ˆ =ααiu  [m] 

1 [0, 0] 
2 [0, 0] 
3 [0, 0] 
4 [0, 0] 
5 [3.2517e-14,7.49058e-13] 
6 [3.81132e-12, 4.692e-12] 
7 [-1.5243e-12,-4.9879e-13] 
8 [ 4.4199e-12, 5.4275e-12 ] 
9 [-1.5134e-12,1.0498e-12] 
10 [8.1381e-12,9.9465e-12] 
11 [-3.1758e-12,-1.7949e-13] 
12 [8.7620e-12,1.0709e-11] 

 
This problem has 8 degree of freedom. 
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9 Numerical example – plane stress problem  
in theory of elasticity  

 
The equilibrium equations of a rod has the following form 
 

 ��
�
�
�

∈

=+
��

���
�

Vu

n
dx

du
EA

dx

d
0

. (111) 

 
where E  is an Young’s module, A is an area of cross section, n is a 
load and V is some functional space. We can formulate the problem 
(111) in the variational form: 
 
 )(),(   , vlvuaVv =∈∀  (112) 
 
where 
 

 �=
L

dx
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+= �L nvdxvl  (114) 

 
To solution of the problem (112) we can apply finite element 
method. Local stiffness matrix (in local coordinate system) has the 
following form: 
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where 
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 ][ ee E=D  (117) 
 
Local stiffness matrix in global coordinate system has the following 
form: 
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where rotation matrix has the following form 
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Local load vector in global coordinate system: 
 

 dx
eV

TeTee nNCQ �= )()(  (120) 

 
The structure is shown in the Fig. 4. 
 

1P 2P

3P

 
Fig. 4 

Numerical data are as follows P=10 [kN], L=1 [m], 3.0=ν , the 
Young’s modulus is the same like in the previous example. Interval 
axial forces are shown in table 4. 
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Table 4. Interval axial force 

No. Axial force [N] 
1 [ 3145.34, 4393.45 ] 
2 [ 1482.48, 1914.16 ] 
3 [ -172.138, -221.845 ] 
4 [ 164.454, 279.737 ] 
5 [ -958.619, -936.417 ] 
6 [ 2459.35, 2536.53 ] 
7 [ 1527.83, 1546.14 ] 
8 [ -343.544, -357.966 ] 
9 [ 1708.72, 1617.27 ] 
10 [ -840.883, -841.035 ] 
11 [ 1132.62, 1189.25 ] 
12 [ 1532.73, 1547.37 ] 
13 [ -338.641, -356.736 ] 
14 [ 3028.51, 2962.81 ] 
15 [ -932.071, -929.76 ] 
16 [ -278.358, -245.009 ] 
17 [ 1656.79, 1671.62 ] 
18 [ -214.586, -232.489 ] 
19 [ 4264.06, 4221.36 ] 
20 [ -169.222, -168.335 ] 
21 [ -751.05, -742.133 ] 
22 [ 453.902, 470.55 ] 
23 [ -1417.47, -1433.55 ] 
24 [ 6437.89, 6417.04 ] 
25 [ -7444.75, -7432.58 ] 
26 [ -200.408, -202.065 ] 
27 [ -2196.2, -2197.33 ] 
28 [ 283.42, 285.763 ] 
29 [ 4020.01, 4013.59 ] 
30 [ -200.408, -202.065 ] 
31 [ -9461.8, -9431.91 ] 
32 [ 3589.87, 3583.79 ] 
33 [ -3488.96, -3478.74 ] 
34 [ 713.715, 704.035 ] 
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35 [ 4929.89, 4924.37 ] 
36 [ 720.439, 696.638 ] 
37 [ 3580.36, 3594.25 ] 
38 [ -3482.95, -3485.36 ] 
39 [ -9466.06, -9427.23 ] 
40 [ 4010.55, 4024 ] 
41 [ -194.644, -208.406 ] 
42 [ -2188.83, -2205.43 ] 
43 [ 275.268, 294.73 ] 
44 [ -7448.38, -7428.59 ] 
45 [ -194.644, -208.406 ] 
46 [ 6417.52, 6439.45 ] 
47 [ 451.658, 473.02 ] 
48 [ -1419.72, -1431.08 ] 
49 [ -738.486, -755.954 ] 
50 [ -166.773, -171.028 ] 
51 [ 4242.96, 4244.56 ] 
52 [ 1655.57, 1672.95 ] 
53 [ -215.805, -231.149 ] 
54 [ -266.518, -258.031 ] 
55 [ -930.146, -931.887 ] 
56 [ 3007.62, 2985.78 ] 
57 [ 1531.23, 1549.04 ] 
58 [ -340.144, -355.068 ] 
59 [ 1144.66, 1176 ] 
60 [ -839.969, -841.95 ] 
61 [ 1686.62, 1641.68 ] 
62 [ 1528.04, 1545.77 ] 
63 [ -343.334, -358.339 ] 
64 [ 2470.18, 2524.72 ] 
65 [ -947.416, -949.597 ] 
66 [ 253.654, 185.319 ] 
67 [ 1683.18, 1701.27 ] 
68 [ -188.192, -202.832 ] 
69 [ 3683.74, 3761.16 ] 
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10 Quasi-analytical method  

Let us consider boundary value problem with fuzzy parameters 
 
 FV ∈∈= huhx,fhuxL    ,   ),(),,(  (121) 
 
If we differentiate the boundary value problem with respect to ih  we 
get a new boundary value problem 
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Let us assume that we know the solution of the boundary value 

problem (121) for )ˆ(0 α
α hh mid=  i.e. ),()( 00

αα hxuxu = . 

Now we can substitute 
i

i h∂
∂= u

v  and we get a new boundary value 

problem 
 

 ( ) ii
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i V
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0
00 α
αα  (123) 

 
Problem (123) can be solved using any method. If we know the solu-
tion of the equations (123) we can calculate extreme solution by us-
ing the algorithm 3. 
 
Let us consider the following example 
 

 2
0)0(  , huuhx

dx

du ⋅==  (124) 

 
The exact solution is the following 
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If we calculate derivative of the boundary value problem (124) with 
respect to h we get 
 

 hu
h

u
  x

h

u

dx

d
02

)0(
, =

∂
∂=

�
�

�
�
�

�

∂
∂

 (126) 

 
or 
 

 huhv  hx
dx

dv
02),0(, =⋅=  (127) 

 
where 
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the solution of the equation (127) is the following 
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2
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2
),(  (129) 

 
If 0>h , then v(x,h)>0 and the function ),( hxuu =  is monotone (for 
fixed x) and extreme solution can be calculated in the following 
way: 
 

 )](),([)(ˆ xuxuxu +−= ααα  (130) 
 
where 
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It should be noted that if we know the numerical solution 0
αu  of the 

problem (121) we could not calculate 
ih∂

∂u
 directly. 

11 Finite difference method  

The derivative 
j

i

h

u

∂
∂

 can be calculated directly using the finite dif-

ference  
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 (133) 

 

The value ),( 0
αhxiu  is a solution of the boundary value problem 

 

 .   ),(),,( 00 V∈= uhx,fhuxL αα  (134) 

 
Other methods of calculation of the sensitivity can be find in the 
book (Kleiber 1997). 
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12 Point monotonicity tests  

12.1 First order monotonicity tests 

If derivative of the function )(huu =  has constant sign, then we can 
assume that the function )(huu =  is monotone. The value of the 

function 
ih

u

∂
∂

 can be approximated by using the linear function: 

 

 �
=

−
∂∂

∂
+

∂
∂

=
∂

∂ m

j
jj

jiii
hh

hh

u

h

u

h

u

1

00
2

0)1(
)(

)()()( hhh
 (135) 

 
An interval function is an interval-valued function of one or more in-
terval arguments. Consider a real-valued function f of real variables 

nxx ,...,1  and an interval function f̂  of interval variables nxx ˆ,...,ˆ1 . 

The interval function f̂  is said to be an interval extension of f if 
 

 ),...,(),...,(ˆ   ,),...,( 111 nnfn xxfxxfDxx =∈∀  (136) 

 
where fD  is a domain of the function f. That is, if the arguments of 

f̂  are degenerate intervals (i.e. ii xx =ˆ ), then )ˆ,...,ˆ(ˆ
1 nxxf  is a 

degenerate interval equal to ),...,( 1 nxxf . 

From properties of interval extensions (Neumaier 1990) arise that 
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and we can assume that the function )(huu =  is monotone. 
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12.2 High order monotonicity tests 

We can also approximate derivative of the function )(huu =  using 
high order polynomials  
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and we can assume that the function )(huu =  is monotone. 

13 Numerical example  
- displacement of the shell structure  

The equilibrium equations of shell structures can be written in the 
following form: 
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where 
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ijg  is a metric tensor. 

Let us consider shell structure, which is shown in Fig. 5. 
 

 
Fig. 5 

In calculation we assume the following numerical data 

],[ ]102.2 ,100.2[ 55 MPaE ⋅⋅∈  [ ],3.0 ,2.0∈ν  L=0.263 [m], 

r=0.126 [m], F=444.8 [N], t= ][1038.2 3 m−⋅ . We will be looking for 
an interval displacement in direction of the force F. Usign first order 
monotonicity test we can check monotonicity of the solution. 
Because the function ),( νEuu =  is monotone, then extreme values 
of the solution can be found using only the endpoints of given 
intervals. The interval solution is as follows: 
 
 α=0: [ ] ][  03748.0,043514.0 mu −−∈ , (143) 
 



36      Numerical solutions of fuzzy partial differential equations and its applications in 
computational mechanics 

 α=1: u = - 0.04102 [m]. (144) 
 
Using point monotonicity test we can calculate the interval solution 
only in some selected points. In this example professional FEM pro-
gram Ansys was applied. 

14 Taylor model of the solution  

If the solution is sufficiently smooth, then we can approximate them 
by using Taylor series 
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Extreme values of the solution can be approximated directly by us-
ing equation (145) and interval arithmetic 
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This method has very low computational complexity (m+1 system of 
equations) (Akapan et all 2001). Unfortunately, the equation (146) 
gives only approximate solution. 
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15 Interval monotonicity tests  

15.1 Linear equations 

Let us consider the problem (36) and assume that we know the solu-
tion of the following systems of linear interval equation 
 

 )ˆ(ˆ)ˆ(ˆ αα hQuhK = . (147) 
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where 
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then the solution of the problem (36) is monotone (with guaranteed 
accuracy). 
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15.2 Numerical example – heat transfer 

Let’s us consider heat transfer problem  
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In calculation we assume the following numerical data 

1R =0.0005 [m], 12 10 RR ⋅= , �
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t 37= , Q= 10245 ��

�
��
�

3m

W
, ��

�
��
�

⋅
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Km

W
 ]0.23 ,21.0[λ . 

Numerical solutions are shown in the table 5. 

Table 5. Interval temperature 

No ][oCTi
−  ][ oCTi

+  

1 36.586 36.619 
2 35.470 35.494 
3 34.782 34.800 
4 34.282 34.298 
5 33.894 33.582 
6 33.302 33.308 
7 33.065 33.070 
8 32.857 32.859 
9 32.669 32.671 

10 32.500 32.500 
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15.3 Nonlinear equations 

Sometimes system of algebraic equations is nonlinear 
 

 αhh0huxF ˆ    ,),,( ∈= . (152) 
 
From implicit function theorem arise that 
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From equation (155) arrays, that if the following determinates 
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have constant sign, then the derivative 
j

i

h

u

∂
∂

 has also constant sign 

and the functions ,...)(..., jii huu =  are monotone. 

From properties of the determinates and Darbox theorem arise, that 
if  
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i.e. the Jacobean matrix are regular, then the functions 

,...)(..., jii huu =  are monotone. 

From properties of interval arithmetic, arise that  
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We can see that, if the interval Jacobean matrices (159, 160) are 
regular, then the functions )(hii uu =  are monotone.  
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15.4 Numerical example – frame structure 

The equilibrium equations of beam is as follows: 
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If we apply the finite element, we get equilibrium equations in the 
following form: 
 
 QuhK =)( . (162) 
 
Let us consider a structure, which is shown in the Fig. 6. 
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Fig. 6 

 
In calculation we assume the following data ],[ ]220 ,210[ GPaE ∈  

],[  
12

0.055
 ,

12
05.0 4

44
mJ �
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�

∈  ],[ ]0.055 ,[0.05 222 mA∈  L=H=1 [m], 

P=1 [kN]. 
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Table 6. Interval displacements 

No. −
iq  [m] +

iq  [m] 

1 0.035716 0.037414 
2 0.000008 0.000009 
3 -0.011230 -0.010718 
4 0.035716 0.037414 
5 -0.000021 -0.000017 
6 -0.011230 -0.010718 
7 0.082163 0.086067 
8 0.00009 0.000010 
9 -0.007494 -0.007151 
10 0.082163 0.086067 
11 -0.000033 -0.000026 
12 -0.007494 -0.007151 

15.5 Subdivision 

The interval extension of the Jacobean matrix may become singular 
even for very narrow intervalsαĥ . In this case, we can divide these 

intervals and repeat procedure again. 
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16 Optimization methods  

16.1 Description of the algorithm 

If the intervals αĥ  are very wide, then we cannot apply methods, 
which were described below. In such situation, optimization meth-
ods can be applied. 
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Approximate solution can be defined as follows: 
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16.2 Numerical example – displacements of beam  

Let us consider beam structure, which is shown in Fig. 7. 
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Fig. 7 
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The equilibrium equation has the following form 
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In calculations we assume that ][ ]102.2,100.2[ 55 MPaE ⋅⋅∈ , 

][ 
12
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44
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∈ , ][ ]001.1,999.0[ mL = , 

][ ]10.1 ,9.9[ kNq ∈ . Numerical results are shown in Fig. 8. 
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Fig. 8 
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17 Conclusions  

1) Calculation of the solutions of the fuzzy partial differential equa-
tions is in general very difficult (NP-hard). 
2) In engineering applications the relation between the solution and 
the uncertain parameters is usually monotone. 
3) Using methods which are based on sensitivity analysis we can 
solve very complicated problems of computational mechanics (even 
with thousands degree of freedom). 
4) If we apply the point monotonicity tests we can use results, which 
were generated by the existing engineering software. 
5) Reliable methods of solution of the fuzzy partial differential equa-
tions are based on the interval arithmetic. These methods have high 
computational complexity. 
6) In some cases (e.g. if we know analytical solution) the optimiza-
tion method can be applied. 
7) In some special cases we can predict the solution of the fuzzy par-
tial differential equations. 
8) The fuzzy partial differential equation can be applied to modeling 
of mechanical systems (structures) with uncertain parameters. 
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