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Abstract. Risk is a part of almost all civil engineering projects. Usually there is a
difference between the real and the estimated cost of the civil engineering projects.
Unfortunately, in civil engineering applications usually we do not have enough data
to calculate probabilistic characteristics [13]. There are also different methods of
modeling of uncertainty [6, 4]. In this paper probabilistic characteristics are modeled
by fuzzy numbers, which are defined by some expert. The resulting cost is described
by probability density functions with fuzzy characteristics (for example mean or
standard deviation). Using assessment from different (or even one) experts we can
estimate the uncertainty of the probability density function of total costs and the
risk. Then using modified Monte-Carlo simulation and the alpha cut method we can
calculate the results.
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1. Introduction

Risk us an integral part of each civil engineering project. We can define
it as possibility of occurrence of loss. One of the most popular type
contracts in Poland is (guaranteed maximum price or cost contract) .
At this time task and costs are predicted on the basis on deterministic
unit costs [13].

Tasks and unit costs are deterministic. Unfortunately, in reality
schedule tasks and unit costs may change because of the influence of
different and usually uncertain factors[2].

2. Calculating of cost of civil engineering projects

Today in Poland the cost of civil engineering project is calculated
by using pure deterministic methods which are based on some cata-
logues [11], set of prices [8, 9] and/or different norms. Existing practical
methods of calculating costs are pure deterministic.
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The total cost can be calculated as:

cT = DC + IC + P + T (1)

where DC - direct costs (labor, material, equipment), IC - indirect
cost (costs of management, cost of insurance etc.), P - profit and risk
of the project, T – taxes.

In this paper only direct costs DC are taken into account.

DC =
n∑

i=1

DCi (2)

where DCi direct costs of each tasks.

3. Probabilistic definition of risk

Many variables have impact upon cost overruns. The prime variables
have been commonly identified as: unpredictable weather, inflationary
material cost, inaccurate materials estimates, complexity of project,
contractor’s lack experience, poor labor productivity, project changes
[10, 6].

The risk of cost is equal to the probability that the real cost cT is
grater than assumed cost cT,0 (maximal).

R = P {cT > cT,0} = 1− P {cT ≤ cT,0} (3)

If we know the probability density function fcT (x) of the random
variable cT then

R = 1−
cT,0∫

−∞
fcT (x) dx = 1− ΦcT (cT,0) (4)

where

ΦcT (x) =
x∫

−∞
fcT (t) dt (5)

is a cumulative distribution function of the random variable cT .
It should be emphasize that the influence of the uncertainty to

the final cost is very difficult to estimate by using pure probabilistic
methods due to lack of credible statistical data.
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4. Calculating of risk of direct costs

At this moment the direst costs are calculated on the basis on standards
[13] which are very general and they do not take into account different
factors which have influence on their values. Because of that there is a
difference between the real costs and predicted costs.

Risk is calculated as constant value which is introduced in order to
cover the losses. The final result of the calculation is a fixed value.

The final price is a result of negotiation between investor and con-
tractors.

Important information for the contractor is the following:
- what is the level of risk which accompany assumed maximal level

of direct costs.
- what is the minimal cost for which the risk can be accepted.
Knowledge about influence of random parameters of the system

would be a very good in negotiations.
There are many programs which enable to calculate project risk (for

example Pert Master, Risk, MS Project etc.) in pure probabilistic sense.
However in practice it is very difficult to obtain reliable statistical data,
because of that the results of the calculations are not credible.

5. Example of analysis of risk

Let’s assume that contractor would like to realize some civil engineer-
ing project for fixed price. The project consist of: determine tasks,
alternative tasks and additional tasks.

One can called the task deterministic if occurrence of it is certain.
Let’s assume that we have two tasks. If in each realization of that

process we can get only one of them, then we can call these tasks
alternative.

If the task may occur in each realization with some probability then
we can call that task additional.

5.1. Preparation of data

Valuation of identified tasks was made on the basis of [8, 9, 11]. Then
the data was aggregated with taking into account technology of real-
ization and allocation of risk. The results are presented in the table
1.

The model of the system consists of some node. Each node is char-
acterized by some costci. One can also define some relations between
the elements. Both route thru the graph and the costs ci are random.
The process can be shown as a Petri nets[14] on the Fig. 1.
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Figure 1. Graphical representation of the process

Table I. Tasks description

No. Name of tasks Costs [PLN] Remarks:

1 P0 217.500 deterministic task

2 P1 132.000 alternative task with P3

3 P2 187.700 alternative task with P3

4 P3 420.000 alternative task with P1, P2

5 P4 261.700 deterministic task

6 P5 43.200 additional task

7 P6 125.300 deterministic task

The tasks are represented by rectangles, conditions are represented
as circle and the arrows show the direction of movement in the graph.
On some connections there is information about the probability of
occurrence of each variant.

According to many numerical experiments adequacy of the cost esti-
mation can be characterized by using beta Pert distribution. Beta Pert
distribution can be define by using most optimistic cost co, most likely
cost cmand most pessimistic cp [3, 12, 1] .
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α =
4 · (cm − co)

cp − co
, β = 4− α (6)

where α, β are parameters of beta distribution.

fα,β(x) =
Γ (α + β)
Γ (α) Γ (β)

(1− x)β−1 xα−1, x ∈ [0, 1] (7)

In calculation it is necessary to use the PDF which is defined on the
interval [co,cp] i.e.

f(x) =
1

cp − co
fα,β

(
x− co

cp − co

)
. (8)

f(x)

C
p

x

C
m

C
o

beta Pert distribution

Figure 2. Beta distribution

Beta Pert distribution is widely used to modeling of uncertainty of
cost because of it is very intuitive (can be defined using co, cm, cp).

However usually we do not know the numbers co, cm, cp precisely.
However, usually it is possible to estimate upper and lower bounds its
values by using expert knowledge.

c−o ≤ co ≤ c+
o , c−m ≤ cm ≤ c+

m, c−p ≤ cp ≤ c+
p (9)

This information is very imprecise. In order to make the calculations
more precisely fuzzy numbers can be applied.

Let’s assume that we would like to define fuzzy numbers co,F , cm,F , cp,F

which represent the number co, cm, cp. We assume that we know the
expert(syrveyor-E1, planner-E2 , site agent-E3) opinions co (ωi) , cm (ωi) , cp (ωi)
for each expert ω1, ω2, ..., ωn ∈ Ω. We can treat ωi as elementary
event of some probability spaceΩ. Examples of such expert opinions
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are shown in the table 2 and 3. The expert opinions are interval valued
cp (ωi) , cm (ωi) , co (ωi) or set they are simply numbers i.e.

cp (ωi) , cm (ωi) , co (ωi) ∈ I (R) (10)

Alpha cut of fuzzy numbers cp,F , cm,F , co,F can be constructed by
using confidence intervals [7]. For given α level the appropriate α cut
cp,F,α, cm,F,α, co,F,α should satisfy the following condition.

P{ωi : cp (ωi) ∩ cp,F,α 6= ∅} = 1− α (11)

P{ωi : cm (ωi) ∩ cm,F,α 6= ∅} = 1− α (12)

P{ωi : co (ωi) ∩ co,F,α 6= ∅} = 1− α (13)

In the simplest case it is possible to apply triangular fuzzy numbers
which are defined in the following way:

c−p,F,0 = min{c−p (ωi) : ωi ∈ Ω} (14)

c+
p,F,0 = min{c+

p (ωi) : ωi ∈ Ω} (15)

c−m,F,0 = min{c−m (ωi) : ωi ∈ Ω}, (16)

c+
m,F,0 = min{c+

m (ωi) : ωi ∈ Ω} (17)

c−o,F,0 = min{c−o (ωi) : ωi ∈ Ω}, (18)

c+
o,F,0 = min{c+

o (ωi) : ωi ∈ Ω} (19)

The vertex of triangle fuzzy number can be defined using generalized
main value.

cp,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)), (20)

cm,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)), (21)

co,F,1 =
∑

ωi∈Ω

P{ωi} ·mid (cp (ωi)). (22)

The fuzzy numbers are which will be used in calculations are given
in the table 5 and 6.

The total cost can be calculated as a sum of random variable with
uncertain parameters h ∈ ĥα.

cT (ω,h) =
n∑

i=1

χi (ω,h) · ci (ω,h) (23)
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Table II. Table of cost evaluation

Process name: P1

Cost: 217.500

Person: E2

Percent of
cost [%]

Min Mid Max

75

80

85

90

95 X

100

105 X

110

115 X

120 X

125

130

135

140

where χ : Ω× ĥα (ω,h) → χ (ω,h) ∈ {0, 1}, ci : Ω× ĥα � (ω,h) →
ci (ω,h) ∈ R, cT : Ω × ĥα � (ω,h) → cT (ω,h) ∈ R are some random
variables with uncertain parameters, ĥα =

[
h−1 , h+

1

]
×

[
h−2 , h+

2

]
× ...×

[h−m, h+
m] ⊆ I (Rm) is an interval vector.

Extreme values of the risk can be defined in the following way:

R̂α (cT,0) =
[
R−

α (cT,0) , R+
α (cT,0)

]
(24)

R̂α (cT,0) =
{
P {ω : cT (ω,h) > cT,0, ω ∈ Ω} : h ∈ ĥα

}
(25)

or

Betkowski_Pownuk.tex; 19/08/2004; 23:29; p.7



8

Table III. Fuzzy probability of alternative costs

Probability of occurrence of alternative

lp. Task Degree of member-
ship

p− p+

P2 α = 0 0.35 0.55

α = 1/3 0.3889 0.5222

α = 2/3 0.4407 0.4944

α = 1 0.4667 0.4667

P5 α = 0 0.15 0.35

α = 1/3 0.1778 0.3111

α = 2/3 0.2148 0.2722

α = 1 0.2333 0.2333

R̂α (cT,0) =
{

1− ΦcT (cT,0,h) : h ∈ ĥα

}
(26)

where

ΦcT (cT,0,h) = P {ω ∈ Ω:cT (ω,h) ≤ cT,0} (27)

Fuzzy membership function µ (x|RF (cT )) of the risk of cost RF (cT )
can be described using the following formula:

µ (x|RF (cT )) = sup
{
α : x ∈ R̂α (cT,0)

}
(28)

6. Approximate algorithm of calculation of fuzzy probability

We can find the approximate values of the fuzzy setRF (cT ) using alpha
cut method and the formula (26).

1) For the discrete values 0 ≤ α1 ≤ α2 ≤ ... ≤ αk ≤ 1 calculate
alpha cut of the uncertain parameters ĥα1 , ĥα2 , . . . , ĥαk

.
2) Divide the intervals ĥαi,1, ĥαi,2, ..., ĥαi,m into k parts.
3) For each combination of the parameters (hαi,1,j1 , hαi,2,j2 , ..., hαi,m,jm) =

hαi,j1,j2,...,jm calculate the cumulative distribution function ΦcT (c,hαi,j1,j2,...,jm).
The approximate value of the alpha cut R̂αi (cT,0) can be calculated.
In the following way.
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Table IV. Fuzzy costs

Alpha Task min mid max

c−o c+
o c−m c+

m c−p c+
p

α = 0 184,88 228,38 206,63 250,13 250,13 293,63

α = 1/3 P0 190,91 219,91 212,66 241,66 254,95 283,95

α = 2/3 196,95 211,45 218,70 233,20 259,78 274,28

α = 1 202,99 202,99 224,74 224,74 264,61 264,61

α = 0 112,20 125,40 125,40 151,80 151,80 178,20

α = 1/3 P1 114,40 123,20 129,07 146,67 154,73 172,33

α = 2/3 116,60 121,00 132,73 141,53 157,66 166,46

α = 1 118,80 118,80 136,40 136,40 160,59 160,59

α = 0 159,55 197,09 178,32 215,86 215,86 253,40

α = 1/3 P2 164,76 189,78 182,48 207,51 221,07 246,09

α = 2/3 169,97 182,48 186,65 199,16 226,28 238,79

α = 1 175,18 175,18 190,82 190,82 231,49 231,49

P3 420,00 420,00 420,00 420,00 420,00 420,00

α = 0 222,45 274,79 248,62 300,96 327,13 379,47

α = 1/3 P4 232,62 267,51 258,79 293,68 334,39 369,26

α = 2/3 242,79 260,23 268,96 286,40 341,66 359,05

α = 1 252,96 252,96 279,13 279,13 348,92 348,85

α = 0 36,72 41,04 41,04 45,36 45,36 49,68

α = 1/3 P5 37,44 40,32 41,76 44,64 46,08 48,96

α = 2/3 38,16 39,60 42,48 43,92 46,80 48,24

α = 1 38,88 38,88 43,20 43,20 47,52 47,52

α = 0 93,98 119,04 119,04 131,57 144,10 169,16

α = 1/3 P6 98,84 115,55 121,12 129,48 146,88 163,58

α = 2/3 103,71 112,07 123,21 127,39 149,66 158,01

α = 1 108,58 108,58 125,30 125,30 152,44 152,44

R−
αi

(cT,0) = (29)

= min {1− ΦcT (cT,0,hαi,j1,j2,...,jm) : j1, ..., jm ∈ {1, ..., k}} (30)

R+
αi

(cT,0) = (31)
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= max { 1− ΦcT (cT,0,hαi,j1,j2,...,jm) : j1, ..., jm ∈ { 1, ..., k}} , (32)

4) Approximate value of the fuzzy membership function µ (x|RF (cT ))
is given by the following formula

µ (x|RF (cT,0)) = sup
{
αi : x ∈ R̂αi (cT,0)

}
, (33)

7. Computer implementation of the algorithm

Algorithm which was described above was implemented in C++ lan-
guage and can be run on Linux and Windows. To generation of random
numbers GSL library was applied.

The models can be described by using BPFPRAL language (Bȩtkowski
Pownuk Fuzzy Probability Risk Analysis Language) [5] . As and exam-
ple below is show the code of simulator which is shown on the Fig. 1

Node

NumberOfNode 0, NumberOfChildren 2, Children 1 3, Probability 0.415,

IntervalProbability 0.088, xMinMin 198.766, xiMnMax 206.016, xMidMin

215.688, xMidMax 219.313, xMaxMin 231.391, xMaxMax 238.641, ProbabilityGrids 3

End

Node

NumberOfNode 1, NumberOfChildren 1, Children 2, xMinMin 125.761, xMinMax

130.161, xMidMin 133.830, xMidMax 138.230, xMaxMin 147.030, xMaxMax 153.63

End

Node

NumberOfNode 2, NumberOfChildren 1, Children 4, xMinMin 171.533, xMinMax

177.789, xMidMin 186.136, xMidMax 189.264, xMaxMin 206.983, xMaxMax 213.24

End

Node

PointValue, NumberOfNode 3, NumberOfChildren 1, Children 4, xMinMin 420.0,

xMinMax 420.0, xMidMin 420.0, xMidMax 420.0, xMaxMin 420.0, xMaxMax 420.0,

NumberOfGrid 1

End

Node

NumberOfNode 4, NumberOfChildren 2, Children 5 6, Probability 0.224,

IntervalProbability 0.088, xMinMin 239.159, xMinMax 247.882, xMidMin

252.244, xMidMax 260.967, xMaxMin 282.863, MaxMax 295.948, NumberOfGrid 2,

ProbabilityGrids 3

End

Node

NumberOfNode 5, NumberOfChildren 1, Children 6, xMinMin 38.52, xMinMax

40.68, xMidMin 42.84, xMidMax 44.28, xMaxMin 47.40, xMaxMax 48.84

End
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Node

NumberOfNode 6, xMinMin 121.123, xMinMax 125.3, xMidMin 126.344, xMidMax

130.521, xMaxMin 140.267, xMaxMax 146.532, NumberOfGrid 2

End

Results

Xmin 820, Xmax 1120, NumberOfSimulations 10000, NumberOfClasses 20,

NumberOfGrid 2, DistributionType 2

End

In presented example only one alpha cut was described. In order to
get full description of fuzzy probability model it is necessary to repeat
these calculations for each alpha cut.

In the program we can define the upper and lower bounds of co, cm, cp

in the following way:

cMinMin ≤ co ≤ cMinMax (34)

cMidMin ≤ cm ≤ cMidMax (35)

cMaxMin ≤ cp ≤ cMaxMax (36)

The meaning of other instructions is explaind in the BPFPRAL user
manual.

8. Numerical results of the calculations

For the example which is shown on the Fig. 1 and is also described
in the BPFPRAL language above. In the numerical experiment 10000
Monte Carlo simulations was used for each combination of uncertain
parameters in each alpha cut. Extreme values of risk and probability
density function of cost were calculated by using 262144 combinations
of uncertain parameters.

The envelopes of the risk curves for particular alpha level equal to
0.33 are shown below.

Now we can show the shape of fuzzy risk surfaces for particular
alpha levels on the Fig. 4, 5, 8 .
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Figure 3. Uncertain risc curve for α = 1/3
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Table V. Numerical results

Cost Probability

α = 0 α = 1/3 α = 2/3 α = 1

Min Max Min Max Min Max

8350 - 8500 1 1 1 1 1 1 1

8500 - 8650 1 1 1 1 1 1 1

8650 - 8800 0,989 1 1 1 1 1 1

8800 - 8950 0,941 1 0,997 1 0,997 1 0,997

8950 - 9100 0,784 1 0,954 1 0,964 1 0,964

9100 - 9250 0,528 1 0,808 1 0,85 1 0,85

9250- 9400 0,172 1 0,515 1 0,719 1 0,719

9400 - 9550 0,006 1 0,179 1 0,481 0,989 0,634

9550 - 9700 0 0.992 0,019 0,99 0,102 0,824 0,574

9700 - 9850 0 0.927 0 0,78 0,007 0,531 0,531

9850 - 10000 0 0,691 0 0,514 0 0,514 0,514

10000 - 10150 0 0,406 0 0,406 0 0,406 0,406

10150 - 10300 0 0,259 0 0,259 0 0,259 0,259

10300 - 10450 0 0,176 0 0,176 0 0,176 0,176

10450 - 10600 0 0,111 0 0,111 0 0,111 0,111

10600 - 10750 0 0,031 0 0,031 0 0,031 0,031

10750 -10900 0 0,009 0 0,009 0 0,009 0,009

10900 - 11050 0 0 0 0 0 0 0

11050 - 11200 0 0 0 0 0 0 0
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9. Conclusions

Presented method allows estimating the direct cost risk of civil en-
gineering projects in the case when there are no credible data. In
presented algorithm the costs can be deterministic, probabilistic, fuzzy
number. It is also possible to take into account the cost which is mod-
eled by probability density function with fuzzy parameters. Unfortu-
nately, at this moment the computational complexity of the algorithm
grows exponentially with respect to the number of the fuzzy param-
eters. The method shows the relation between the assumed maximal
direct costs, the risk of overrun and the uncertainty of the statistical
data.
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